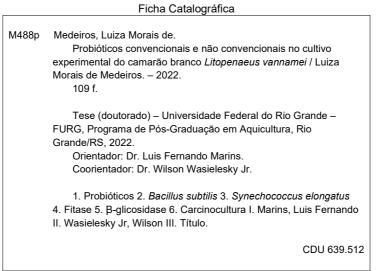

Universidade Federal do Rio grande - FURG Instituto de Oceanografia Programa de Pós-Graduação em Aquicultura

Probióticos convencionais e não convencionais no cultivo experimental do camarão branco *Litopenaeus vannamei*

Luiza Morais de Medeiros


Rio Grande - RS Fevereiro de 2022 Universidade Federal do Rio grande - FURG Instituto de Oceanografia Programa de Pós-Graduação em Aquicultura

Probióticos convencionais e não convencionais no cultivo experimental do camarão branco *Litopenaeus vannamei*

Discente: Luiza Morais de Medeiros Orientador: Luis Fernando Marins Coorientador: Wilson Wasielesky Jr.

> Tese apresentada como parte dos requisitos para obtenção do grau de Doutora em Aquicultura pelo Programa de Pós-Graduação em Aquicultura da Universidade Federal do Rio Grande-FURG.

Rio Grande - RS Fevereiro de 2022

Catalogação na Fonte: Bibliotecário José Paulo dos Santos CRB 10/2344

Conte-me e eu esqueço. Mostre-me e eu apenas me lembro. Envolva-me e eu compreendo.

Confúcio

ii

AGRADECIMENTOS

Agradeço a Deus por todos os momentos, por ser a força que me levanta todos os dias, por me manter sã mesmo quando a vontade era sair correndo e gritando.

Ao meu orientador, Luis Fernando Marins, pela orientação, confiança, amizade e ensinamentos, mas principalmente por ter acreditado em mim e ter realizado o meu sonho de trabalhar com biologia molecular. Um profissional genial e um ser humano incrível! É a minha inspiração.

Ao meu coorientador Wilson Wasielesky Jr, por todo incentivo, conversas, conhecimento compartilhado! Tenho orgulho do que aprendi aqui.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), por fomentar minha bolsa e conceder todo o apoio financeiro necessário.

Aos membros que fizeram parte da Banca Examinadora, os professores Lucielen Santos, Rodrigo Maggioni, Dariano Krummenauer e Vírginia Pedrosa, pelas conversas, ensinamentos e por todas as sugestões e colaborações para este trabalho.

Aos meus pais, Aluízio Vieira e Salete Morais, por tudo que passaram para que eu chegasse até aqui, a verdade é que só a gente sabe a importância dessa conquista. Obrigada pelo amor incondicional, pela dedicação sem limites.

Aos meus irmãos, Acácio e Bebê, pelos sorrisos mais fáceis da minha vida. Meus príncipes. Nunca estive sozinha, porque vocês estão sempre comigo!

Aos integrantes e ex-integrantes, do Laboratório de Biologia Molecular (FURG), do Laboratório de Carcinocultura (FURG), do Laboratório de Nutrição de Organimos Aquáticos (LANOA), ao Laboratório de Imunologia e Patologia de Organismos Aquáticos, aos integrantes e ex-integrantes da salinha quatro do Instituto de Ciências Biológicas e tantas pessoas maravilhosas que conheci nesse Rio Grande do Sul! Sou grata por me acolherem, é uma honra ter convivido com tanta gente incrível, por toda a ajuda, sem vocês, certamente, não conseguiria. Obrigada por todos os momentos de descontração, pelas risadas e brincadeiras.

Aos meus colegas, amigos, irmãos, família, Turma 2010.1, Amanda, Caio, Helly, Iuri, Joaquim, Marília, Vanessa. Sou uma pessoa melhor depois que conheci vocês, obrigada por

estarem perto, mesmo longe, por todos os abraços, por serem a melhor turma que alguém poderia pedir. Vocês confiaram em mim, mesmo quando ninguém acreditou.

A todas as pessoas que de uma forma ou de outra contribuíram para a realização desse trabalho, a todos vocês, meu muito obrigada.

ATA 02/2022

No dia vinte e dois de fevereiro de dois mil e vinte e dois, às oito horas e trinta minutos, reuniu-se a Banca Examinadora de Tese de Doutorado em Aquicultura, da LUIZA MORAIS DE MEDEIROS, orientada pelo Prof. Dr. Luis Fernando Marins, composta pelos seguintes membros: Prof. Dr. Luis Fernando Marins (Orientador -IO/FURG), Prof. Dr. Wilson Wasielesky Junior (Co orientador - IO/FURG), Prof. Dr. Dariano Krummenuer (IO/FURG), Profª. Dª. Virgínia Fonseca Pedrosa (IO/FURG), Prof^a. Dr^a. Lucielen Oliveira dos Santos (EQA/FURG) e o Prof. Dr. Rodrigo Maggioni (UFC). Título da Tese: "Probióticos convencionais e não convencionais no cultivo experimental do camarão branco Litopenaeus vannamer". Dando início à defesa, o Coordenador do PPGAq, Prof. Dr. Dariano Krummenauer passou a presidência da sessão ao Prof. Dr. Luis Fernando Marins, que na qualidade de orientador, passou a palavra para a candidata apresentar a Tese. Após ampla discussão entre os membros da Banca e a candidata, a Banca se reuniu sob a presidência do Coordenador. Durante esse encontro ficou estabelecido que as sugestões dos membros da Banca Examinadora devem ser incorporadas na versão final, ficando a cargo do Orientador o cumprimento desta decisão. A candidata LUIZA MORAIS DE MEDEIROS foi considerada APROVADA, devendo a versão definitiva de a Tese ser entregue na Secretaria do PPGAq, no prazo estabelecido nas Normas Complementares do Programa. Nada mais havendo a tratar, foi lavrada a presente ata, que após lida e aprovada, será assinada pela Banca Examinadora, pela candidata e pelo Coordenador do PPGAq.

PROF. DR. LUIS FERNANDO MARINS (ORIENTADOR GOVDI

PROF. DR. WILSON WASIELESICYJUNIOR (CO ORIENTADOR - IO/FURG)

PROF. DR. DARIANO KRUMMENAUER (IO/FURG)

PROF. DR. VIRGINIA FONSECA PEDROSA (10/FURG)

PROF^a. DR^a. LUCIELEN OLIVEIRA DOS SANTOS (EQA/FURG)**g**o**v.b**r

Documente assinado digitalmente LUCIELON OLIVIERA DOS SARTOS Dese: 20/02/1002 31:51:50:000 Verifique en Intipo://verificador.ik.br

PROF. DR. RODRIGO MAGGIONI (UFC) govbr State 2140200

LUIZA MORAIS DE MEDEIROS

Decumento assinado digitalmente

Gorpi, Transie of HEDEROS

PROF. DR. DARIANO KRUMMENAUER (Coordenador do PPGAqui)

SUMÁRIO

RESUMO vii
ABSTRACT ix
INTRODUÇÃO GERAL 11
Aquicultura 11
Alimentação na aquicultura 11
Ácido fítico e fitases 13
Saponinas e β-glicosidases 14
Probióticos na Aquicultura 15
Engenharia Genética em probióticos na Aquicultura 17
HIPÓTESES 20
Hipótese geral 20
Hipótese específica 1 20
Hipótese específica 220
Hipótese específica 320
OBJETIVOS 21
Objetivo Geral 21
Objetivos específicos 21
REFERÊNCIAS BIBLIOGRÁFICAS DA INTRODUÇÃO GERAL22
CAPÍTULO I 30
A native strain of <i>Bacillus subtilis</i> increases lipid accumulation and modulates expression of genes related to digestion and amino acid metabolism in Pacific white shrimp <i>Litopenaeus vannamei</i> 30
CAPÍTULO II 60
Recombinant <i>Bacillus subtilis</i> expressing a fungal phytase as a probiotic additive in the diet of Pacific white shrimp <i>Litopenaeus vannamei</i> 60
CAPÍTULO III 81
Dietary supplementation of <i>Synechococcus elongatus</i> PCC 7942 expressing a heterologous β-glucosidase on the expression of genes related to digestion, immune system, and antioxidant defenses of the shrimp <i>Litopenaeus vannamei</i> 81
DISCUSSÃO GERAL
CONSIDERAÇÕES FINAIS
PERSPECTIVAS 107
REFERÊNCIAS BIBLIOGRÁFICAS DA DISCUSSÃO GERAL 109

RESUMO

Probióticos exercem inúmeros efeitos benéficos na aquicultura, especialmente no que se refere ao desempenho zootécnico, conversão alimentar e resposta imune. Diversos microrganismos podem ser caracterizados como probióticos e o desenvolvimento da biotecnologia tem permitido que estes microrganismos possam ser utilizados como plataformas de expressão de proteínas heterólogas, as quais que podem potencializar os efeitos benéficos já reconhecidos dos probióticos convencionais. Na presente Tese foram realizados três experimentos de 45 dias, cada um testando um probiótico diferente como aditivo na ração do camarão Litopenaeus vannamei. No capítulo I, testou-se o potencial probiótico de uma cepa de Bacillus subtilis (cepa E) previamente isolada do trato gastrointestinal dos camarões. Neste estudo foram avaliados parâmetros como desempenho zootécnico, composição centesimal do tecido muscular, número de vacúolos lipídicos no hepatopâncreas e a expressão de genes relacionados à digestão, ao metabolismo de aminoácidos e às defesas antioxidantes. Os resultados mostraram que a suplementação da ração com a cepa E não afetou o desempenho zootécnico dos camarões, mas aumentou a concentração de lipídios no músculo e no hepatopâncreas. Além disso, genes relacionados aos processos digestivos e ao metabolismo de aminoácidos foram fortemente reduzidos, indicando que a suplementação alimentar com a cepa E de B. subtilis pode melhorar a absorção de nutrientes da ração e minimizar os efeitos tóxicos dos compostos nitrogenados presentes na água de cultivo. No capítulo II, o objetivo foi avaliar o efeito de uma cepa de B. subtilis KM0 geneticamente modificada que expressa e secreta uma fitase fúngica, a qual pode melhorar aspectos nutricionais relacionados com o metabolismo do fósforo de camarões. Quando foi adicionado à ração comercial de L. vannamei, esse B. subtilis geneticamente modificado não alterou de forma significativa parâmetros de crescimento. No entanto, houve uma diminuição na expressão de genes relacionados com a digestão e um aumento de 39% no teor de fósforo no tecido muscular e, também, um aumento na contagem de vacúolos lipídicos no hepatopâncreas do camarão. No capítulo III, o objetivo foi suplementar a ração comercial com uma cepa geneticamente modificada da cianobactéria Synechococcus elongatus expressando uma β-glicosidase heteróloga, a qual pode impactar o metabolismo de carboidratos do camarão. Os resultados demonstraram que a suplementação da ração comercial com as cianobactérias (selvagem ou transgênica) não afetou de forma negativa os índices de crescimento, peso final e taxa de conversão alimentar dos camarões em

comparação com os controles. Entretanto, as cianobactérias alteraram a expressão de genes relacionados à digestão (*amy*, *gdh* e *cathB*) e ao sistema imune (*tgase*), enquanto a cianobactéria transgênica, isoladamente, aumentou significativamente o conteúdo de fósforo e lipídio no músculo dos camarões. Em conclusão, a presente tese demonstrou que o uso tanto de probióticos isolados do trato intestinal do camarão *L. vannamei* assim como probióticos geneticamente modificados podem trazer diversos benefícios aos camarões, o que é interessante do ponto de vista ambiental e econômico, contribuindo para a sustentabilidade da carcinocultura.

Palavras-chave: Probióticos, *Bacillus subtilis*, *Synechococcus elongatus*, fitase, β -glicosidase, carcinocultura.

ABSTRACT

Probiotics exert numerous beneficial effects in aquaculture, especially regarding zootechnical performance, feed conversion and immune response. Several microorganisms can be characterized as probiotics and the development of biotechnology has allowed these microorganisms to be used as platforms for the expression of heterologous proteins, which can enhance the already recognized beneficial effects of conventional probiotics. In the present Thesis, three 45-day experiments were carried out, each one testing a different probiotic as an additive in the diet of *Litopenaeus vannamei* shrimp. In chapter I, the probiotic potential of a strain of *Bacillus subtilis* (strain E) previously isolated from the gastrointestinal tract of shrimp was tested. In this study, parameters such as zootechnical performance, proximate composition of muscle tissue and the expression of genes related to digestion, the immune system and antioxidant defenses were evaluated. The results showed that the supplementation of the diet with strain E did not affect the zootechnical performance of the shrimp but increased the concentration of lipids in the muscle and hepatopancreas. In addition, genes related to digestive processes and amino acid metabolism were strongly reduced, indicating that feed supplementation with the E strain of B. subtilis can improve the absorption of nutrients from the feed and minimize the toxic effects of the nitrogen compounds present in the water of animals creation. In chapter II, the objective was to evaluate the effect of a genetically modified strain of B. subtilis KM0 that expresses and secretes a fungal phytase, which can improve nutritional aspects related to the phosphorus metabolism of shrimp. When added to commercial feed of L. vannamei, this genetically modified B. subtilis did not significantly alter growth parameters. However, there was a decrease in the expression of genes related to digestion and an increase of 39% in phosphorus content in muscle and an increase in lipid vacuole count in shrimp hepatopancreas. In chapter III, the objective was to supplement the commercial feed with a genetically modified strain of the cyanobacterium *Synechococcus elongatus* expressing a heterologous β -glucosidase, which can impact the carbohydrate metabolism of shrimp. The results showed that the supplementation of commercial feed with cyanobacteria (wild or transgenic) did not negatively affect the growth rates, final weight and feed conversion rate of shrimp compared to the controls. However, cyanobacteria altered the expression of genes related to digestion (amy, gdh and cathB) and to the immune system (tgase), while the transgenic cyanobacterium, alone, significantly increased the phosphorus and lipid content in shrimp

muscle. In conclusion, the present Thesis showed that the use of both probiotics isolated from the intestinal tract of *L. vannamei* as well as genetically modified probiotics can bring several benefits to shrimp, which is interesting from an environmental and economic point of view, contributing to the sustainability of the shrimp farming.

Keywords: Probiotics, *Bacillus subtilis, Synechococcus elongatus*, phytase, β -glucosidase, shrimp farming.

1 INTRODUÇÃO GERAL

2

3 Aquicultura

De acordo com as últimas estatísticas mundiais sobre aquicultura compilado pela 4 5 FAO, a produção atingiu outro recorde histórico de 114,5 milhões de toneladas em peso vivo em 2018. Nesse mesmo ano, os crustáceos corresponderam a 9,4 milhões de toneladas. A 6 7 aquicultura tem sido o setor de produção de alimentos que se expandiu mais rapidamente em 8 todo o mundo, sendo que a produção aquícola mundial cresceu em média 5,3 % ao ano no 9 período de 2001-2018 (FAO, 2020). A produção da aquicultura também atingiu outro recorde 10 histórico: estima-se que gerou 82 milhões de toneladas, movimentando um valor total de US\$ 11 250 bilhões. Dessa forma, a aquicultura é responsável por 46 % da produção total e 52 % de peixes para consumo humano. Camarões marinhos dominam a produção na aquicultura e são 12 13 uma importante fonte de ganhos para uma série de países em desenvolvimento na Ásia e na 14 América Latina. O setor de criação de camarões, que agora fornece a maior parte do volume 15 para o mercado global, também sofreu o impacto de surtos de doenças e variações de preços 16 associadas aos ciclos de alta e baixa. Os altos volumes de produção aquícola em 2018 e 2019 empurraram os preços de mercado para níveis baixos, levando a um planejamento 17 conservador por parte dos produtores. Além disso, espera-se que as espécies que requerem 18 maiores proporções de farinha e óleo de peixe em suas dietas tenham um crescimento na 19 produção mais lento devido aos precos mais altos e à disponibilidade reduzida de farinha de 20 peixe. O Brasil ocupa a 10^a posição na produção de aquicultura marinha e costeira de 21 crustáceos. No entanto, desde 2014 não há estatística pesqueira oficial e os dados são obtidos 22 23 por levantamentos realizados pela FAO e seus parceiros (FAO, 2020).

24

25 Alimentação na aquicultura

A farinha e o óleo de peixe são produtos de uso quase exclusivo para fabricação de ração para organismos aquáticos. A farinha de peixe é rica em macro e oligoelementos, contém nutrientes essenciais, bem como muitos compostos que são biologicamente ativos (Hardy, 2010). Quando há um desequilíbrio no nível de aminoácidos, há também uma alteração no metabolismo das proteínas, logo é importante que na alimentação de camarões exista uma fonte de proteína que tenha um equilíbrio adequado dos aminoácidos para promover um desempenho de crescimento satisfatório (Jin et al., 2019). Além da importância da proteína na ração, outro fator importante é o óleo de peixe, que é considerado a principal
fonte de lipídios para aquicultura devido às suas altas proporções de ácidos graxos altamente
insaturados de cadeia longa e seus benefícios nutricionais (Zhou et al., 2014).

Um dos desafios da aquicultura é o fornecimento de nutrientes ao sistema, 4 principalmente na forma de rações compostas produzidas industrialmente. À medida que esta 5 indústria continua a se expandir, também aumenta a demanda por ingredientes-chave para 6 7 rações (Gia Vo et al., 2020). A produção de farinha e óleo de peixe flutua de acordo com as mudanças nas capturas das espécies, o que afeta a abundância dos estoques pesqueiros. A 8 9 redução progressiva na oferta ocorre ao mesmo tempo em que há demanda crescente impulsionada por uma indústria de aquicultura de rápido crescimento, o que aumentou os 10 11 preços da farinha e do óleo de peixe. Como consequência, a incorporação de farinha e óleo de 12 peixe nas dietas está diminuindo (FAO, 2020; Zhu et al., 2021). Em virtude disso, a indústria 13 da aquicultura investiga ativamente fontes alternativas de proteína para substituir os subprodutos da pesca na alimentação de animais aquáticos (To e Liou, 2021). Além disso, a 14 15 otimização da digestão de proteínas é um objetivo fundamental para o alcance do alto 16 desempenho zootécnico na aquicultura (Dai et al., 2018).

17 O aumento da concorrência global e as mudanças na demanda, os avanços 18 tecnológicos e as novas descobertas por meio de pesquisas estão fazendo com que a indústria 19 de manufatura de ingredientes adote novas tecnologias de processamento e novos 20 ingredientes. Paralelamente, ocorre o crescimento acelerado da produção de rações para a aquicultura, o que resulta em várias fontes alternativas de proteína vegetal testadas e que estão 21 disponíveis no mercado (Galkanda-Arachchige et al., 2021). No entanto, embora as fontes de 22 proteína vegetal terrestre se mostrem promissoras na pesquisa por proteína alimentar 23 alternativa, as proteínas vegetais apresentam conhecidas limitações nutricionais. Um dos 24 principais fatores que contribuem para um menor valor nutricional é a presença de fatores 25 26 antinutricionais (ANFs) de ocorrência natural, por exemplo, fitato, taninos, inibidores de 27 enzimas e saponinas, entre outros, que diminuem indiretamente a biodisponibilidade dos 28 minerais (Nikmaram et al., 2017). Além disso, a substituição completa da farinha de peixe em 29 rações para espécies marinhas é mais difícil e exigirá mais esforços de pesquisa (Hardy, 2010). 30

31

1 Ácido fítico e fitases

2 O ácido fítico possui seis grupos fosfato em uma única molécula de seis carbonos, e é a principal forma de armazenamento de fosfato em muitos tecidos vegetais (Hussain et al., 3 2021). É um composto onipresente (variando de 0,4% a 6,4% em peso), naturalmente 4 presente em cereais, grãos, sementes oleaginosas e nozes (Nikmaram et al., 2017). O fitato 5 diminui a digestibilidade de proteínas e aminoácidos e a eficiência de absorção em peixes e 6 7 outros animais por ser uma molécula polianiônica que se quela em nutrientes carregados positivamente (íons metálicos como Ca²⁺, Mg²⁺, Zn²⁺ e Fe²⁺). Essa molécula atua como um 8 fator antinutricional, formando complexos com proteínas, afetando a digestão e inibindo as 9 enzimas digestivas, como α-amilase, tripsina, fosfatase ácida e tirosinase (Hussain et al., 10 2021). Assim, a presença do fitato na matéria vegetal é uma das principais restrições que 11 12 limitam o uso de proteínas vegetais na alimentação animal (Kumar et al., 2012).

13 Sabe-se que o fósforo é um elemento essencial para plantas e animais, pois é componente dos ácidos nucléicos e desempenha um papel no metabolismo de lipídios, 14 15 sacarídeos e proteínas (Truong et al., 2020). Além disso, o fósforo não digerido e excretado na água contribui para o processo de eutrofização (Kumar et al., 2012). Visto que o fitato 16 17 indisponibiliza o fósforo, a redução enzimática do teor de ácido fítico em alimentos e rações é 18 desejável, pois melhora a qualidade nutricional dos alimentos (Singh e Satyanarayana, 2015). A fitase, quimicamente conhecida como mio inositol (1,2,3,4,5,6) - hexafosfato 19 fosfohidrolase, catalisa a hidrólise do fitato, o que produz uma molécula de inositol e seis 20 moléculas de fosfato inorgânico, tornando o fósforo disponível para absorção. Logo, esta 21 enzima pode reduzir o efeito antinutricional do fitato e melhorar a digestibilidade do fósforo, 22 cálcio, aminoácidos e energia, além de reduzir o impacto negativo da excreção de fósforo 23 inorgânico no meio ambiente (Dersjant-Li et al., 2015). 24

As fitases de ocorrência natural são abundantes e podem ser obtidas de plantas, 25 animais e microorganismos (bactérias, fungos e leveduras) (Hussain et al., 2021). As fitases 26 produzidas por microrganismos são comumente utilizadas como aditivo comercial para 27 rações. Em 1999, a primeira geração da fitase fúngica obtida a partir de A. niger foi 28 disponibilizada comercialmente (Jatuwong et al., 2020). As fitases fúngicas são histidina 29 fosfatases ácidas e são amplamente utilizadas para a produção de fitases em escala comercial. 30 O papel da fitase no desempenho do crescimento dos peixes está bem documentado (Afzal et 31 al., 2019; Li et al., 2019; Shahzad et al., 2018). As fitases fúngicas melhoram o valor 32 nutricional de alimentos e rações, pois aumenta a utilização proteínas, vitaminas e 33

aminoácidos ao degradar os complexos fitina-proteína, melhorando uso e a biodisponibilidade
de diferentes nutrientes, além de melhorar a digestibilidade de minerais (Hussain et al., 2021).
Por outro lado, as fitases também mitigam os impactos causados pela descarga excessiva de
fósforo em ambientes aquáticos (Singh e Satyanarayana, 2015).

5

6 Saponinas e β-glicosidases

7 As saponinas são fitoquímicos de ocorrência natural, estrutural e funcionalmente diversos, amplamente distribuídos nas plantas. São um grupo complexo e quimicamente 8 9 variado de compostos que consistem em triterpenóides ou agliconas esteroidais ligadas a porções de oligossacarídeo. A combinação de uma estrutura de aglicona hidrofóbica e 10 11 moléculas de açúcar hidrofílicas torna as saponinas altamente anfipáticas e confere 12 propriedades de formação de espuma e emulsificação (Moses et al., 2014). Além disso, as 13 saponinas são consideradas um dos fatores antinutricionais (ANFs) presentes em proteínas vegetais que são alternativas na substituição da farinha de peixe. Quando há uma redução da 14 15 saponina na dieta, há também um melhor desempenho de crescimento (Fadel et al., 2021). Foi reportado que as saponinas da soja agravaram a inflamação intestinal de forma dose 16 17 dependente concomitante com a expressão regulada positivamente de citocinas inflamatórias, 18 destruíram a estrutura das junções intracelulares, diminuíram as atividades de parâmetros 19 antioxidantes selecionados e aumentaram a apoptose das células epiteliais intestinais em peixes (Gu et al., 2018). Também, foi demonstrado que a saponina de soja na dieta de 20 Monopterus albus diminuiu o crescimento, danificou a estrutura intestinal e a barreira 21 22 intestinal, induzindo inflamação intestinal nos animais (Hu et al., 2021). Em termos gerais, as saponinas podem afetar a utilização de proteínas, minerais e vitaminas (Zhou et al., 2018). A 23 hidrólise enzimática de ANFs, como as saponinas, tem o potencial de aumentar a 24 biodisponibilização de nutrientes (Zhou et al., 2018). O uso de farelo de soja processado 25 26 tratado com enzimas mostrou melhor desempenho de crescimento e eficiência alimentar do 27 que farelo de soja convencional em dietas de trutas arco-íris, o que demonstra que o 28 bioprocessamento enzimático pode reduzir os ANFs e aumentar o conteúdo de proteína no 29 farelo de soja processado convencional sem comprometer o valor nutricional (Kumar et al., 2020). 30

As β-glicosidases podem hidrolisar a ligação glicosídica β-1,4 de dissacarídeos,
 oligossacarídeos e moléculas substituídas por glicose e, também, catalisar as reações
 sintéticas por meio de reação hidrolítica reversa ou transglicosilação. Por ser um grupo

diversificado de enzimas com ampla distribuição em bactérias, fungos, plantas e animais, tem
potencial para ser utilizado em vários processos biotecnológicos, como produção de
biocombustíveis, hidrólise de isoflavonas, realce de sabor, síntese de oligossacarídeos e a
produção combustível como o etanol a partir de resíduos agrícolas (Ahmed et al., 2017;
Singhania et al., 2013). Além da hidrólise da celulose, já está bem documentado que βglicosidases também podem hidrolisar saponinas (Renchinkhand et al., 2015; Yan et al.,
2018).

8

9 **Probióticos na Aquicultura**

Em uma das primeiras revisões que discutiram o que seriam probióticos Ringø e 10 11 Gatesoupe (1998) mostraram que esses microrganismos são capazes de colonizar o intestino e 12 atuar de forma antagônica contra patógenos gram-negativos. Além disso, são capazes de 13 produzir bacteriocinas inofensivas e podem reduzir a necessidade de uso de antibióticos na aquicultura. Hill et al. (2014) sugeriram como definição que probióticos são "microrganismos 14 15 vivos que, quando administrados em quantidades adequadas, conferem um benefício à saúde do hospedeiro". Para serem usados como probióticos, é essencial que os microrganismos 16 17 sejam considerados como GRAS (geralmente reconhecidos como seguros); que é um status 18 usado para resolver o problema da colonização de patógenos em diferentes ecossistemas, afirmados pela FDA Estado-Unidense (US Food and Drug Administration) ou determinados 19 20 independentemente por especialistas qualificados (Bouchard et al. 2013).

Os probióticos surgiram como uma alternativa ao uso de agentes antimicrobianos, com 21 o objetivo de melhorar a saúde dos peixes (Martínez Cruz et al., 2012). Alguns estudos 22 apontam que a primeira aplicação de probióticos na aquicultura foi realizada em 1986 23 (Gatesoupe, 1999; Ringø et al., 2020). Na década de 1990, Munro et al. (1995) relacionaram 24 bactérias que são benéficas (probióticas) com a estimulação do crescimento de algas 25 26 unicelulares. Rapidamente, o interesse por tais microrganismos aumentou e um número 27 crescente de trabalhos científicos tem tratado explicitamente de probióticos desde então (por exemplo, Ruiz et al., 1996; Gildberg et al., 1997; Ringø e Gatesoupe, 1998; Hu et al., 2022; 28 29 Ma et al., 2022; Kolanchinathan et al., 2022).

A introdução dos probióticos na aquicultura substituiu significativamente o uso de antibióticos sintéticos comerciais. Dessa forma, os probióticos têm sido aplicados junto com as rações comerciais para controlar ou prevenir infecções bacterianas ou fúngicas (Ock Kim et al., 2020), ou adicionados aos sistemas de cultivo para melhorar a qualidade da água.

1 Evidências crescentes sugerem que os antibióticos podem alterar a microbiota intestinal, o 2 que potencialmente afeta a saúde do hospedeiro. Em Litopenaeus vannamei, o uso de antibióticos pode alterar a diversidade, composição e função microbiana intestinal (Zeng et 3 al., 2019), enquanto microrganismos probióticos têm a capacidade de melhorar o 4 desenvolvimento e a microflora intestinal, além de produzirem várias substâncias 5 antibacterianas naturais (Aarti et al., 2017; Amoah et al., 2019). Hostins et al. (2017; 2019) 6 7 observaram que os probióticos podem ser usados para complementar o efeito protetor dos 8 bioflocos, de forma que o manejo da comunidade microbiana pode ser uma ferramenta para 9 reduzir o risco de doenças, estabelecer sistemas altamente biosseguros, além de controlar infecções patogênicas no intestino do hospedeiro quando aplicado de forma racional. 10

11 As bactérias mais utilizadas como probióticos na aquicultura são bactérias ácido lácticas e Bacillus. Entretanto, também são utilizados vários outros gêneros como Aeromonas, 12 13 Alteromonas, Arthrobacter, Bifidobacterium, Clostridium, Paenibacillus, Phaeobacter, Pseudoalteromonas, Pseudomonas, Rhodosporidium, Roseobacter, Streptomyces e, até 14 15 mesmo. Vibrio. Microalgas (Tetraselmis) e leveduras (Debarvomyces, Phaffia e Saccharomyces) também podem ser consideradas como probióticos (Ringø et al, 2020). No 16 17 entanto, existem alguns microrganismos que são mais comumente utilizados na aquicultura e 18 incluem bactérias antagônicas (Bacillus, Pseudomonas, Alteromonas e Flavobacterium odoratum), os quais são microrganismos funcionais que melhoram a absorção de nutrientes e 19 20 a atividade digestiva do hospedeiro (bactérias ácido-láticas e leveduras) e microrganismos que melhoram a qualidade da água (denitrificantes e bactérias nitrificantes) (Qi et al, 2009). Além 21 22 disso, cepas endêmicas, autóctones ou derivadas do hospedeiro também podem ser usadas como probióticos e conferem beneficios à saúde (Luis-Villaseñor et al., 2011; Pham et al., 23 2014). 24

Esses microrganismos comumente utilizados podem ser ditos "probióticos 25 convencionais". No entanto, existem outros que não são tão comuns que podem ser 26 27 caracterizados como "não convencionais". Dentre esses, estão as bactérias gram-negativas e gram-positivas, leveduras, bacteriófagos, algas unicelulares e actinobactérias (Butt et al., 28 29 2021; Das et al., 2008), além de probióticos geneticamente modificados. Dentro desse cenário, algumas cianobactérias também podem ser consideradas como probióticos não 30 31 convencionais. pois apresentam potencial probiótico através de sua atividade imunomoduladora (Riccio and Lauritano, 2020) e, também, são capazes de produzir 32 compostos bioativos com diversas aplicações, como a inibição de patógenos (Santhakumari et 33

al., 2017). Um estudo recente relatou que cianobactérias podem ter um impacto de longo
 alcance no microbioma intestinal levando ao aumento da riqueza bacteriana, podendo
 desempenhar um papel importante no desenvolvimento e na saúde de peixes (Rosenau et al.,
 2021).

Para que um microrganismo seja considerado com potencial probiótico algumas 5 características devem ser atendidas, como a promoção do crescimento, inibição de patógenos, 6 7 melhoria na digestão de nutrientes, da qualidade da água, aumento da tolerância ao estresse e 8 efeitos na reprodução, aumento na assimilação de macronutrientes e melhora no estado de 9 saúde dos animais através da ativação do sistema imunológico (Olmos et al., 2020; Pham et al., 2014). Essas características se expressam devido à capacidade que os probióticos têm de 10 11 produzir moléculas que possuem atividade bactericida sobre as bactérias patogênicas 12 intestinais do hospedeiro, proporcionando uma barreira contra a proliferação de patógenos 13 oportunistas (Martínez Cruz et al. 2012).

A administração de probióticos também pode resultar no aumento do consumo e a 14 15 absorção de nutrientes da ração devido à sua capacidade de liberar uma ampla gama de enzimas digestivas e, também, de nutrientes que podem participar do processo de digestão e 16 17 utilização da ração, juntamente com a absorção de componentes da dieta, levando a uma 18 melhora no bem-estar e na saúde do hospedeiro. Além disso, os probióticos contribuem para a maturação intestinal, prevenção de distúrbios intestinais, pré-digestão de fatores 19 20 antinutricionais encontrados nos ingredientes da ração, microbiota intestinal e metabolismo (Olmos et al., 2020; Ringø et al., 2020). 21

22

23 Engenharia genética em probióticos na aquicultura

Microrganismos podem ser reprogramados para produzir moléculas de interesse, 24 através da manipulação do metabolismo, adicionando e excluindo seletivamente genes 25 26 relacionados a determinadas vias metabólicas (Choudhary e Mahadevan, 2020). As espécies 27 de Bacillus são consideradas cepas promissoras com inúmeras vantagens, incluindo: não 28 toxicidade, facilidade para manipulação genética, alto rendimentos de proteínas heterólogas, 29 taxa de crescimento rápida e baixa necessidade de nutrientes (van Dijl e Hecker, 2013). Entre as espécies de Bacillus, B. subtilis tem sido amplamente utilizada como uma biofábrica para a 30 produção de proteínas recombinantes devido à sua natureza geralmente considerada segura 31 (GRAS), além de um sistema secretor naturalmente eficiente. Além disso, existe um amplo 32

conhecimento sobre sua genética, fisiologia e processos de fermentação em larga escala
 (Schallmey et al., 2004, James et al., 2021).

Outros microrganismos com potencial em aplicações biotecnológicas são as microalgas e cianobactérias. A exploração dessa diversidade genética permite o uso eficiente de microrganismos fotossintéticos como biofábricas de enzimas recombinantes que serão úteis e podem ser utilizadas em diferentes indústrias como na produção de alimento para consumo humano, ração animal, aquicultura, cosméticos e biocombustíveis. Além disso, por serem fotoautótrofos, com requisitos nutricionais mínimos, as microalgas apresentam vantagens em comparação com outras células microbianas (Brasil et al., 2017).

10 A expressão recombinante é um método importante para facilitar a produção de 11 proteínas alvo. Com o desenvolvimento da biotecnologia, novos sistemas de expressão e 12 novas técnicas para a exibição de proteínas heterólogas em células probióticas têm sido 13 desenvolvidos (Yao et al., 2020). A engenharia genética em probióticos tem sido utilizada com diversos objetivos, como aplicações em alimentos, biomédicas (Zuo et al., 2020), 14 15 produção de biocombustíveis (Hlavova et al., 2015), dentre outros. Whelan et al. (2014) 16 modificaram geneticamente uma bactéria probiótica para secretar imunomodulador de 17 parasitas para tratamento direcionado no local da inflamação intestinal em camundongos e 18 porcos, demonstrando que a eficiência anti-inflamatória de um probiótico pode ser melhorada 19 por um transgene imunorregulador e que esse tratamento pode ter um potencial como opção terapêutica para a doença inflamatória intestinal. Amiri-Jami et al. (2015) também 20 modificaram uma bactéria probiótica para a produção recombinante de ácidos graxos ômega-21 3, mostrando que probiótico transgênico produtor de EPA/DHA pode ser utilizado como fonte 22 segura, alternativa e econômica para a produção industrial e farmacêutica desses ácidos 23 graxos poli-insaturados de alto valor comercial. Tang et al. (2016) demonstraram que a 24 administração oral de esporos de B. subtilis recombinantes em camundongos pode fornecer 25 26 proteção efetiva contra Clonorchis sinensis, uma zoonose de origem alimentar que pode ser 27 ocasionada pela ingestão de peixe cru contaminado por esse trematódeo.

Na aquicultura, alguns estudos recentes já mostram a aplicação da engenharia genética em probióticos. Santos et al. (2020) desenvolveram uma cepa de *B. subtilis* com o objetivo de melhorar a digestibilidade de rações que apresentam altos níveis de proteína vegetal, que foi projetado para produzir e secretar uma fitase fúngica. Riet et al. (2021) desenvolveram uma cepa geneticamente modificada de *B. subtilis* para a produção de dsRNAs antivirais contra a proteína viral 28 (VP28) do vírus da mancha branca (WSSV), que minimiza a replicação viral e pode se tornar uma importante ferramenta terapêutica para as espécies da aquicultura. Nesse
mesmo sentido, Zhuang et al. (2021) construíram uma *Synechococcus elongatus* PCC 7942
que expressa VP28 para proteção de camarões contra o WSSV. Levando em consideração que
os probióticos têm um papel na regulação imunológica, o portador de uma vacina oral seria
mais propício para interagir com o hospedeiro e poderia estimular uma resposta imunológica
eficaz na mucosa intestinal e até mesmo sistêmica (Yao et al., 2020).

2 HIPÓTESES

3

4 Hipótese geral

A administração dietética de probióticos convencionais ou não convencionais é capaz
de alterar dois níveis de organização biológica do camarão *Litopenaeus vannamei*: genéticomolecular e composição tecidual.

8

9 Hipótese específica 1

10 A administração dietética de uma cepa de *Bacillus subtilis* isolada do intestino do 11 camarão *L. vannamei* é capaz de melhorar o desempenho zootécnico e alterar a composição 12 do tecido muscular e o perfil de expressão gênica relacionado às defesas antioxidantes, 13 digestão e metabolismo de aminoácidos do camarão cultivado experimentalmente.

14

15 Hipótese específica 2

A administração dietética de uma cepa de Bacillus subtilis geneticamente modificada 16 17 para expressar uma fitase heteróloga é capaz de melhorar o desempenho zootécnico e alterar a 18 composição do tecido muscular e o perfil de expressão gênica relacionado às defesas 19 digestão metabolismo de aminoácidos antioxidantes, e do camarão cultivado 20 experimentalmente.

21

22 Hipótese específica 3

23A administração dietética da cianobactéria Synechococcus elongatus geneticamente24modificada para expressar uma β-glicosidase heteróloga é capaz de melhorar o desempenho25zootécnico e alterar a composição do tecido muscular e o perfil de expressão gênica26relacionado à resposta imune, defesas antioxidantes, digestão e metabolismo de aminoácidos27docamarão28cultivado29experimentalmente.

2 **OBJETIVOS**

3

4 **Objetivo Geral**

Introduzir diferentes probióticos (convencionais e não convencionais) como aditivos
dietéticos no cultivo experimental do camarão branco *Litopenaeus vannamei*, avaliando seus
efeitos em dois níveis de organização biológica: genético-molecular e composição tecidual.

8

9 **Objetivos específicos**

Testar os efeitos de uma cepa de *Bacillus subtilis* isolada do intestino do
 camarão *L. vannamei* como aditivo dietético, avaliando o desempenho zootécnico,
 composição do tecido muscular, número de vacúolos lipídicos no hepatopâncreas e o perfil de
 expressão gênica relacionado às defesas antioxidantes, digestão e metabolismo de
 aminoácidos de *L. vannamei* cultivado experimentalmente;

Testar os efeitos de uma cepa de *Bacillus subtilis* geneticamente modificada
 para expressar uma fitase heteróloga como aditivo dietético, avaliando o desempenho
 zootécnico, composição do tecido muscular, número de vacúolos lipídicos no hepatopâncreas
 e o perfil de expressão gênica relacionado às defesas antioxidantes, digestão e metabolismo de
 aminoácidos de *L. vannamei* cultivado experimentalmente;

- 20 Testar os efeitos de uma cianobactéria *Synechococcus elongatus* geneticamente 21 modificada para expressar uma β -glicosidase heteróloga como aditivo dietético, avaliando o 22 desempenho zootécnico, composição do tecido muscular e o perfil de expressão gênica 23 relacionado à resposta imune, defesas antioxidantes, digestão e metabolismo de aminoácidos 24 de *L. vannamei* cultivado experimentalmente.
- 25

2

2 K 3

REFERÊNCIAS BIBLIOGRÁFICAS DA INTRODUÇÃO GERAL

- Aarti, C., Khusro, A., Varghese, R., Arasu, M.V., Agastian, P., Al-Dhabi, N.A., Ilavenil, S.,
 Choi, K.C. (2017) In vitro studies on probiotic and antioxidant properties of *Lactobacillus brevis* strain LAP2 isolated from *Hentak*, a fermented fish product of
 North-East India. LWT Food Science and Technology 86:438–446.
 https://doi.org/10.1016/j.lwt.2017.07.055
- Afzal, M., Sultana, N., Hassan, A., Shah, S.Z.H., Fatima, M., Hussain, S.M., Bilal, M.,
 Hussain, M. (2019) Effectiveness of acidification and phytase pretreatment on growth
 performance, muscle proximate composition and nutrient digestibility of Rohu (*Labeo rohita*, Hamilton 1822) juveniles fed soybean meal-based diet. Pakistan Journal of
 Zoology 51(5):1741-1750. https://doi.org/10.17582/journal.pjz/2019.51.5.1741.1750
- Ahmed, A., Nasim, F.U.-H., Batool, K., Bibi, A. (2017) Microbial β-glucosidase: sources,
 production and applications. Journal of Applied & Environmental Microbiology 5:31–
 46. https://doi.org/10.12691/jaem-5-1-4
- Amiri-Jami, M., Abdelhamid, A.G., Hazaa, M., Kakuda, Y., Mansel, W.G. (2015)
 Recombinant production of omega-3 fatty acids by probiotic *Escherichia coli* Nissle
 1917 FEMS Microbiology Letters 362. https://doi.org/10.1093/femsle/fnv166
- Amoah, K., Huang, Q.C., Tan, B.P., Zhang, S., Chi, S.Y., Yang, Q.H., Liu, H.Y., Dong, X.H.
 (2019) Dietary supplementation of probiotic *Bacillus coagulans* ATCC 7050,
 improves the growth performance, intestinal morphology, microflora, immune
 response, and disease confrontation of Pacific white shrimp, *Litopenaeus vannamei*.
 Fish and Shellfish Immunology 87:796–808. https://doi.org/10.1016/j.fsi.2019.02.029
- Bouchard, D.S., Rault, L., Berkova, N., Loir, Y.L., Even, S. (2013) Inhibition of *Staphylococcus aureus* invasion into bovine mammary epithelial cells by contact with
 live *Lactobacillus casei*. Applied and Environmental Microbiology 79(3):877–885.
 https://doi.org/10.1128/AEM.03323-12
- Brasil, B.S.A.F., Siqueira, F.G., Salum, T.F.C., Zanette, C.M., Spier, M.R. (2017) Microalgae
 and cyanobacteria as enzyme biofactories. Algal Research 25:76-89.
 https://doi.org/10.1016/j.algal.2017.04.035

- Butt, U.D., Lin, N., Akhter, N., Siddiqui, T., Li, S., Wu, B. (2021) Overview of the latest
 developments in the role of probiotics, prebiotics and synbiotics in shrimp
 aquaculture. Fish and Shellfish Immunology 114:263-281.
 https://doi.org/10.1016/j.fsi.2021.05.003
- 5 Choudhary, R., Mahadevan, R. (2020) Toward a systematic design of smart probiotics.
 6 Current Opinion in Biotechnology 64: 199-209.
 7 https://doi.org/10.1016/j.copbio.2020.05.003
- Dai, J., Li, Y., Yang, P., Liu, Y., Chen, Z., Ou, W., Ai, Q., Zhang, W., Zhang, Y., Mai, K.
 (2018). Citric acid as a functional supplement in diets for juvenile turbot, *Scophthalmus maximus* L.: Effects on phosphorus discharge, growth performance, and
 intestinal health. Aquaculture 495: 643–653.
 https://doi.org/10.1016/j.aquaculture.2018.04.004
- Dersjant-Li, Y., Awati, A., Schulze, H., Partridge, G. (2015) Phytase in non-ruminant animal
 nutrition: A critical review on phytase activities in the gastrointestinal tract and
 influencing factors. Journal of the Science of Food and Agriculture 95:878-896.
 https://doi.org/10.1002/jsfa.6998
- Fadel, A.H.I., Kamarudin, M.S., Romano, N., Ebrahimi, M., Saad, C.R., Samsudin, A.A.
 (2021) Pre-treating carob seed germ meal enhanced digestibility, growth performance
 and feed utilisation in red tilapia (*Oreochromis sp.*). Animal Feed Science and
 Technology 278. https://doi.org/10.1016/j.anifeedsci.2021.114976
- Galkanda-Arachchige, H.S.C., Hussain, A.S., Davis, D.A. (2021) Fermented corn protein
 concentrate to replace fishmeal in practical diets for Pacific white shrimp *Litopenaeus vannamei*. Aquaculture Nutrition 27(5): 1640-1649. https://doi.org/10.1111/anu.13303
- Gatesoupe, F.J. (1999) The use of probiotics in aquaculture. Aquaculture 180:147-165.
 https://doi.org/10.1016/S0044-8486(99)00187-8
- Gia Vo, L.L., Galkanda-Arachchige, H.S., Iassonova, D.R., Davis, D.A. (2020) Efficacy of
 modified canola oil to replace fish oil in practical diets of Pacific white shrimp
 Litopenaeus vannamei. Aquaculture Research. 52: 2446– 2459.
 https://doi.org/10.1111/are.15094
- Gildberg, A., Mikkelsen, H., Sandaker, E., Ringø, E. (1997) Probiotic effect of lactic acid
 bacteria in the feed on growth and survival of fry of Atlantic cod (*Gadus morhua*).
 Hydrobiologia 352: 279–285. https://doiorg.ez13.periodicos.capes.gov.br/10.1023/A:1003052111938

Gu, M., Jia, Q., Zhang, Z., Bai, N., Xu, X., Xu, B. (2018) Soya-saponins induce intestinal 1 inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus). Fish 2 and Shellfish Immunology 77: 264–272. https://doi.org/10.1016/j.fsi.2018.04.004 3 Hardy, R.W. (2010) Utilization of plant proteins in fish diets: Effects of global demand and 4 supplies of fishmeal. Aquaculture Research 41(5): 770-776. 5 https://doi.org/10.1111/j.1365-2109.2009.02349.x 6 7 Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B. et al. (2014) The international scientific association for probiotics and prebiotics 8 9 consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology 11:506-514. https://doi.org/ 10 11 10.1038/nrgastro.2014.66 Hlavova, M., Turoczy, Z., Bisova, K. (2015) Improving microalgae for biotechnology - From 12 13 genetics to synthetic biology. Biotechnology Advances 33: 1194-203. https://doi.org/10.1016/j.biotechadv.2015.01.009 14 15 Hostins, B. L., Lara, G. R., Decamp, O., Cesar, D. E., Wasielesky, W.J. (2017) Efficacy and variations in bacterial density in the gut of Litopenaeus vannamei reared in a BFT 16 17 system and in clear water supplemented with a commercial probiotic mixture. Aquaculture 480:58 - 64. https://doi.org/10.1016/j.aquaculture.2017.07.036 18 Hostins, B. L., Wasielesky, W. J., Decamp, O., Bossier, P., De Schryver, P. (2019) Managing 19 input C/N ratio to reduce the risk of Acute Hepatopancreatic Necrosis Disease 20 (AHPND) outbreaks in biofloc systems - A laboratory study. Aquaculture 508: 60 -21 65. https://doi.org/10.1016/j.aquaculture.2019.04.055 22 Hu, C., Huang, Z., Sun, B., Liu, M., Tang, L., Chen, L. (2022) Metabolomic profiles in 23 zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure, 24 Environmental Research, 204. https://doi.org/10.1016/j.envres.2021.112380. 25 26 Hu, Yajun, Zhang, J., Xue, J., Chu, W., Hu, Yi (2021) Effects of dietary soy isoflavone and soy saponin on growth performance, intestinal structure, intestinal immunity and gut 27 microbiota community on rice field eel (Monopterus albus). Aquaculture 537. 28 29 https://doi.org/10.1016/j.aquaculture.2021.736506 Hussain, S.M., Hanif, S., Sharif, A., Bashir, F., Iqbal, H.M.N. (2021) Unrevealing the sources 30 and catalytic functions of phytase with multipurpose characteristics. Catalysis Letters. 31 https://doi.org/10.1007/s10562-021-03752-z 32

 James, G., Das, B.C., Jose, S., Kumar, R.V.J. (2021) *Bacillus* as an aquaculture friendly
 microbe. Aquaculture International 29, 323–353. https://doiorg.ez13.periodicos.capes.gov.br/10.1007/s10499-020-00630-0

- Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P., Lumyong, S.
 (2020) Bioprocess for production, characteristics, and biotechnological applications of
 fungal phytases. Frontiers in Microbiology 11:188.
 https://doi.org/10.3389/fmicb.2020.00188
- Jin, Y., Liu, F.J., Liu, Y.J., Tian, L.X. (2019) Dietary phenylalanine requirement of the
 juvenile Pacific white shrimp *Litopenaeus vannamei* (Boone) reared in low-salinity
 water. Journal of Shellfish Research 38: 35–41. https://doi.org/10.2983/035.038.0103
- Kolanchinathan, P., Rathna, P., Raja, K., John, G., Balasundaram, A. (2022) Analysis of feed
 composition and growth parameters of *Penaeus monodon* supplemented with two
 probiotic species and formulated diet. Aquaculture 549.
 https://doi.org/10.1016/j.aquaculture.2021.737740.
- Kumar, V., Lee, S., Cleveland, B.M., Romano, N., Lalgudi, R.S., Benito, M.R., McGraw, B.,
 Hardy, R.W. (2020) Comparative evaluation of processed soybean meal
 (EnzoMealTM) vs. regular soybean meal as a fishmeal replacement in diets of
 rainbow trout (*Oncorhynchus mykiss*): Effects on growth performance and growthrelated genes. Aquaculture 516. https://doi.org/10.1016/j.aquaculture.2019.734652
- Kumar, V., Sinha, A.K., Makkar, H.P.S., de Boeck, G., Becker, K. (2012) Phytate and
 phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition 96: 333364. https://doi.org/10.1111/j.1439-0396.2011.01169.x
- Li, X.Q., Zhang, X.Q., Kabir Chowdhury, M.A., Zhang, Y., Leng, X.J. (2019) Dietary
 phytase and protease improved growth and nutrient utilization in tilapia (*Oreochromis niloticus* × *Oreochromis aureus*) fed low phosphorus and fishmeal-free diets.
 Aquaculture Nutrition 25: 46–55. https://doi.org/10.1111/anu.12828
- Luis-Villaseñor, I.E., Macías-Rodríguez, M.E., Gómez-Gil, B., Ascencio-Valle, F., CampaCórdova, Á.I. (2011) Beneficial effects of four *Bacillus* strains on the larval
 cultivation of *Litopenaeus vannamei*. Aquaculture 321: 136–144.
 https://doi.org/10.1016/j.aquaculture.2011.08.036
- Ma, S., Yu, D., Liu, Q., Zhao, M., Xu, C., Yu, J. (2022) Relationship between immune performance and the dominant intestinal microflora of turbot fed with different

1	Bacillus species. Aquaculture 549.
2	https://doi.org/10.1016/j.aquaculture.2021.737625.
3	Martínez Cruz, P., Ibáñez, A.L., Monroy Hermosillo, O.A., Ramírez Saad, H.C. (2012) Use
4	of probiotics in aquaculture. ISRN Microbiology 1-13.
5	https://doi.org/10.5402/2012/916845
6	Moses, T., Papadopoulou, K.K., Osbourn, A. (2014) Metabolic and functional diversity of
7	saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical Reviews
8	in Biochemistry and Molecular Biology 49(6): 439-62.
9	https://doi.org/10.3109/10409238.2014.953628
10	Munro, P.D., McLean, H.A., Barbour, A. and Birkbeck, T.H. (1995) Stimulation or inhibition
11	of growth of the unicellular alga Pavlova lutheri by bacteria isolated from larval turbot
12	culture systems. Journal of Applied Bacteriology, 79: 519-524. https://doi-
13	org.ez13.periodicos.capes.gov.br/10.1111/j.1365-2672.1995.tb03172.x
14	Nikmaram, N., Leong, S.Y., Koubaa, M., Zhu, Z., Barba, F.J., Greiner, R., Oey, I.,
15	Roohinejad, S. (2017) Effect of extrusion on the anti-nutritional factors of food
16	products: An overview. Food Control 79:62-73.
17	https://doi.org/10.1016/j.foodcont.2017.03.027
18	Ock Kim, Y., Mahboob, S., Viayaraghavan, P., Biji, D., Abdullah Al-Ghanim, K., Al-Misned,
19	F., Ahmed, Z., Kwon, J.T., Won Na, S., Kim, H.J. (2020) Growth promoting activity
20	of Penaeus indicus by secondary metabolite producing probiotic bacterium Bacillus
21	subtilis isolated from the shrimp gut. Journal of King Saud University - Science 32:
22	1641–1646. https://doi.org/10.1016/j.jksus.2019.12.023
23	Olmos, J., Acosta, M., Mendoza, G., Pitones, V. (2020) Bacillus subtilis, an ideal probiotic
24	bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent
25	microbial diseases, and avoid water pollution. Archives of Microbiology 202(3)427-
26	435. https://doi.org/10.1007/s00203-019-01757-2
27	Pham, D., Ansquer, D., Chevalier, A., Dauga, C., Peyramale, A., Wabete, N., Labreuche, Y.,
28	(2014) Selection and characterization of potential probiotic bacteria for Litopenaeus
29	stylirostris shrimp hatcheries in New Caledonia. Aquaculture 432: 475-482.
30	https://doi.org/10.1016/j.aquaculture.2014.04.031
31	Qi, Z.Z., Zhang, X.H., Boon, N., Bossier, P. (2009) Probiotics in aquaculture of China -
32	current state, problems and prospect. Aquaculture 290: 15-21. doi:
33	https://doi.org/10.1016/j.aquaculture.2009.02.012
	26

Renchinkhand, G., Park, Y.W., Cho, S.H., Song, G.Y., Bae, H.C., Choi, S.J., Nam, M.S. 1 (2015) Identification of β -Glucosidase activity of lactobacillus plantarum CRNB22 in 2 3 kimchi and its potential to convert ginsenoside Rb1 from panax ginseng. Journal of Food Biochemistry 39: 155–163. https://doi.org/10.1111/jfbc.12116 4 Riccio G, Lauritano C (2020) Microalgae with immunomodulatory activities. Marine Drugs 5 18(1). https://doi.org/10.3390/md18010002 6 7 Riet, J., Costa-Filho, J., Dall'Agno, L., Medeiros, L., Azevedo, R., Nogueira, L.F., Maggioni, R., Pedrosa, V.F., Romano, L.A., Altenbuchner, J., Wasielesky, W., Marins, L.F. 8 9 (2021) Bacillus subtilis expressing double-strand RNAs (dsRNAs) induces RNA interference mechanism (RNAi) and increases survival of WSSV-challenged 10 11 Litopenaeus vannamei. Aquaculture 541: 736834. https://doi.org/10.1016/J.AQUACULTURE.2021.736834 12 Ringø, E., Gatesoupe, F.J. (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177-13 203. https://doi.org/10.1016/S0044-8486(97)00299-8 14 15 Ringø, E., van Doan, H., Lee, S.H., Soltani, M., Hoseinifar, S.H., Harikrishnan, R., Song, S.K. (2020) Probiotics, lactic acid bacteria and bacilli: interesting supplementation for 16 17 aquaculture. Journal of Applied Microbiology 129: 116–136. https://doi.org/10.1111/jam.14628 18 Rosenau, S., Oertel, E., Mott, A.C., Tetens, J. (2021) The effect of a total fishmeal 19 replacement by Arthrospira platensis on the microbiome of african catfish (Clarias 20 gariepinus). Life 11:558. https://doi.org/10.3390/life11060558 21 Ruiz, C.M., Román, G., Sánchez, J.L. (1996) A marine bacterial strain effective in producing 22 antagonisms of other bacteria. Aquaculture International 4:289-291. https://doi-23 org.ez13.periodicos.capes.gov.br/10.1007/BF00117388 24 Santos, K.O., Costa-Filho, J., Riet, J., Spagnol, K.L., Nornberg, B.F., Kütter, M.T., Tesser, 25 M.B., Marins, L.F. (2019) Probiotic expressing heterologous phytase improves the 26 immune system and attenuates inflammatory response in zebrafish fed with a diet rich 27 652-658. soybean meal. Fish and Shellfish Immunology 93: 28 in https://doi.org/10.1016/j.fsi.2019.08.030 29 Santhakumari, S., Nilofernisha, N.M., Ponraj, J.G., Pandian, S.K., Ravi, A.V. (2017) In vitro 30 and in vivo exploration of palmitic acid from Synechococcus elongatus as an 31 antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. 32 33 Journal of Invertebrate Pathology 150:21–31. https://doi.org/10.1016/j.jip.2017.09.001

- Schallmey, M., Singh, A., Ward, O.P. (2004) Developments in the use of *Bacillus* species for
 industrial production. Canadian Journal of Microbiology. 50(1): 1-17.
 https://doi.org/10.1139/w03-076
- Shahzad, M.M., Hussain, S.M., Javid, A., Hussain, M. (2018) Role of phytase
 supplementation in improving growth parameters and mineral digestibility of *Catla catla* fingerlings fed moringa by-products based test diet. Turkish Journal of Fisheries
 and Aquatic Sciences 18(4): 557-566. https://doi.org/10.4194/1303-2712-v18 4 07
- 8 Singh, B., Satyanarayana, T. (2015) Fungal phytases: Characteristics and amelioration of
 9 nutritional quality and growth of non-ruminants. Journal of Animal Physiology and
 10 Animal Nutrition 99(4):646-60. https://doi.org/10.1111/jpn.12236
- Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., Pandey, A. (2013) Role and
 significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol
 production. Bioresource Technology 127:500-507.
 https://doi.org/10.1016/j.biortech.2012.09.012
- 15 Tang, Z.L., Shang, M., Chen, T.J., Ren, P.L., Sol, H.C. Qu, H.L., Lin, Z.P., Zhou, L.N., Yu, J.Y., Jiang, H.Y., Zhou, X.Y., Li, X.R., Huang, Y., Xu, J., Yu, X.B. (2016) The 16 17 immunological characteristics and probiotic function of recombinant Bacillus subtilis 18 spore expressing cysteine protease. Parasites Vectors 9(648). 19 https://doi.org.ez13.periodicos.capes.gov.br/10.1186/s13071-016-1928-0
- 20TheStateofWorldFisheriesandAquaculture2020.FAO(2020)21https://doi.org/10.4060/ca9229en
- To, V.A., Liou, C.H. (2021) Taurine supplementation enhances the replacement level of
 fishmeal by soybean concentrate in diets of juvenile Pacific white shrimp (*Litopenaeus vannamei* Boone, 1931). Aquaculture Research 52: 3771–3784.
 https://doi.org/10.1111/are.15222
- Truong, H.H., Moss, A.F., Bourne, N.A., Simon, C.J. (2020) Determining the importance of
 macro and trace dietary minerals on growth and nutrient retention in juvenile *Penaeus monodon*. Animals 10: 1–25. https://doi.org/10.3390/ani10112086
- van Dijl, J.M., Hecker, M. (2013) *Bacillus subtilis*: from soil bacterium to super-secreting cell
 factory. Microbial Cell Factories 12(3). https://doi.org/10.1186/1475-2859-12-3.
- Whelan, R.A., Rausch, S., Ebner, F., Günzel, D., Richter, J.F., Hering, N.A., Schulzke, JD.,
 Kühl, A.A., Keles, A., Janczyk, P., Nöckler, K., Wieler, L.H., Hartmann, S. (2014) A
 transgenic probiotic secreting a parasite immunomodulator for site-directed treatment

- 1ofgutinflammation.MolecularTherapy22:1730-1740.2https://doi.org/10.1038/mt.2014.125.
- Yan, S., Wei, P. cheng, Chen, Q., Chen, X., Wang, S. cheng, Li, J. ru, Gao, C. (2018)
 Functional and structural characterization of a β-glucosidase involved in saponin
 metabolism from intestinal bacteria. Biochemical and Biophysical Research
 Communications 496:1349–1356. https://doi.org/10.1016/j.bbrc.2018.02.018
- Yao, Y.Y., Yang, Y.L., Gao, C.C., Zhang, F.L., Xia, R., Li, D., Hu, J., Ran, C., Zhang, Z.,
 Liu-Clarke, J., Zhou, Z.G. (2020) Surface display system for probiotics and its
 application in aquaculture. Reviews in Aquaculture 12(4): 2333-2350.
 https://doi.org/10.1111/raq.12437
- Zeng, S., Hou, D., Liu, J., Ji, P., Weng, S., He, J., Huang, Z. (2019) Antibiotic supplement in
 feed can perturb the intestinal microbial composition and function in Pacific white
 shrimp. Applied Microbiology and Biotechnology 103: 3111–3122.
 https://doi.org/10.1007/s00253-019-09671-9
- Zhou, J.C., Han, D., Jin, J.Y., Xie, S.Q., Yang, Y.X., Zhu, X.M. (2014) Compared to fish oil
 alone, a corn and fish oil mixture decreases the lipid requirement of a freshwater fish
 species, *Carassius auratus gibelio*. Aquaculture 428–429: 272–279.
 https://doi.org/10.1016/j.aquaculture.2014.03.029
- Zhou, Z., Ringø, E., Olsen, R.E., Song, S.K. (2018) Dietary effects of soybean products on
 gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition
 24:644-665. https://doi.org/10.1111/anu.12532
- Zhu, Z.H., Yang, Q. hui, Tan, B. ping, Zhou, X.Q., Dong, X. hui, Chi, S. yan, Liu, H. yu,
 Zhang, S. (2021) Effects of replacing fishmeal with soybean protein concentrate (SPC)
 on growth, blood biochemical indexes, non-specific immune enzyme activity, and
 nutrient apparent digestibility for juvenile *Litopenaeus vannamei*. Aquaculture
 International 29:2535-2554. https://doi.org/10.1007/s10499-021-00765-8
- Zhuang, M.-M., Peng, W., Xu, Y., Jia, X.-H., Shi, D.-J., He, P.-M., Jia, R. (2021)
 Construction and application of easy-to-detect cyanobacteria with vp28 gene. Journal
 of Applied Phycology 33(4):1-8. https://doi.org/10.1007/s10811-021-024142/Published
- Zuo, F., Chen, S., Marcotte, H. (2020) Engineer probiotic bifidobacteria for food and
 biomedical applications Current status and future prospective. Biotechnology
 Advances 45:107654. https://doi.org/10.1016/j.biotechadv.2020.107654
- 34

1	
2	CAPÍTULO I
3	
4	
5	A native strain of <i>Bacillus subtilis</i> increases lipid accumulation and modulates
6	expression of genes related to digestion and amino acid metabolism in Pacific
7	white shrimp Litopenaeus vannamei
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	Manunscrito submetido no periódico Animal Feed Science and Technology (FI = 3,313)
27	
28	Obs.: No presente capítulo foi acrescentado, para efeito de publicação, os dados obtidos do
29	Trabalho de Conclusão de Curso de Laura Dall'Agno, realizado em 2019, com colaboração
30	científica da Universidade Federal do Ceará (UFC). Portanto, toda a metodologia e resultados
31	referentes ao isolamento, identificação molecular e caracterização fenotípica da cepa de
32	Bacillus subtilis (cepa E), aqui utilizada, são oriundos de um outro estudo realizado no
33	Laboratório de Biologia Molecular do ICB/FURG, sob orientação do Prof. Dr. Luis Fernando

1 Marins. A Biol. Laura Dall'Agno está de acordo e é coautora do manuscrito.

2 A native strain of *Bacillus subtilis* increases lipid accumulation and modulates 3 expression of genes related to digestion and amino acid metabolism in Pacific white 4 shrimp *Litopenaeus vannamei*

5

Luiza Medeiros^a, Laura Dall'Agno^a, Jade Riet^a, Bruna Nornberg^a, Raíza Azevedo^a, Arthur
Cardoso^a, Jéssica Lucinda Saldanha da Silva^b, Oscarina Viana de Sousa^b, Victor Torres
Rosas^c, Marcelo Borges Tesser^d, Virgínia F. Pedrosa^e, Luis A. Romano^e, Wilson Wasielesky
Jr.^f, Luis F. Marins^{a*}

10

¹¹ ^aLaboratory of Molecular Biology, Institute of Biological Sciences, University of Rio Grande,

- 12 Rio Grande, RS, Brazil
- 13 ^bEnvironmental and Fish Microbiology Laboratory, Marine Sciences Institute, Federal
- 14 University of Ceará, Fortaleza, CE, Brazil
- ¹⁵ ^cQatar University, Environmental Science Center. P.O. Box: 2713, Doha Qatar.
- ¹⁶ ^dLaboratory of Nutrition of Aquatic Organisms, Institute of Oceanography, Federal University
- 17 of Rio Grande, Rio Grande, RS, Brazil
- ¹⁸ ^eLaboratory of Immunology and Pathology of Aquatic Organisms, Institute of Oceanography,
- 19 Federal University of Rio Grande, Rio Grande, RS, Brazil
- ²⁰ ^fLaboratory of Shrimp Culture, Institute of Oceanography, Federal University of Rio Grande,
- 21 Rio Grande, RS, Brazil
- 22
- 23 *Corresponding author: Luis Fernando Marins, Laboratory of Molecular Biology, Institute of
- 24 Biological Sciences, University of Rio Grande, Av. Italia Km 8, CEP 96203-900, Rio Grande,
- 25 RS, Brazil. Email: dqmluf@furg.br
- 26

2 Abstract

3

The use of probiotics has been an interesting alternative for shrimp farming, as the benefits 4 5 provided by these bacteria are already recognized. In the present study, a strain of Bacillus subtilis (strain E) was isolated from the gastrointestinal tract of the shrimp Litopenaeus 6 7 vannamei and molecularly identified. The probiotic potential of strain E was characterized, 8 and it was used as a food additive in an experiment with *Litopenaeus vannamei* for 45 days. 9 The zootechnical performance, proximate composition of muscle tissue, lipid concentration in hepatopancreas and expression of genes related to digestion, amino acid metabolism and 10 11 antioxidant defenses in different tissues of shrimp were evaluated. The results showed that the supplementation of the feed with strain E did not affect the zootechnical performance of the 12 shrimp, but it increased the lipid concentration in the muscle and hepatopancreas. 13 Furthermore, genes related to digestion and amino acid metabolism were strongly reduced, 14 15 indicating that feed supplementation with the strain E of B. subtilis may improve the absorption of nutrients from the feed and minimize the toxic effects of the nitrogen 16 17 compounds present in the rearing water.

18

Keywords: Probiotic bacteria, shrimp farming, digestion, immune system, antioxidant
defenses.

21

2 1. INTRODUCTION

Shrimp farming is one of the sectors with the highest economic value within 3 aquaculture activities, with the Pacific white shrimp (Litopenaeus vannamei) being the most 4 commercially produced crustacean (FAO, 2020). This shrimp has been widely farmed due to 5 its ability to tolerate different environmental conditions. It also has a good growth rate and 6 7 can easily adapt to commercial feeds. However, the search for increased productivity has led 8 to inadequate management practices, especially about the high densities of shrimp that can be 9 difficult to support if the system is not adequate. Thus, diseases caused by viruses and 10 bacteria on shrimp farms have become increasingly prominent (Shen et al., 2010). Viral 11 diseases such as White Spot Syndrome (WSS) can cause catastrophic losses on farms in a few 12 days (Wen et al., 2014), as well as bacterial diseases caused by Vibrio species can cause equally harmful impacts on shrimp production by causing high mortality rates (Zokaeifar et 13 14 al., 2012a). Additionally, nutrition is also a factor that needs to be considered, since feed has 15 been reported as the most important component of the production cost of shrimp farms in 16 several countries (Karim et al., 2014; Nisar et al., 2021; Penda et al., 2013; Shang et al., 1998). Fishmeal, the main source of protein in commercial feed, has become a scarce and 17 18 expensive ingredient. Alternative protein sources such as plant matter have showed negative 19 effects on fish nutrition due to the presence of anti-nutritional compounds (Azeredo et al., 20 2017; Estruch et al., 2018). One of the possibilities to increase the efficiency in the 21 digestibility of commercial feed is to use probiotic bacteria that can produce and secrete digestive enzymes. 22

There are numerous bacterial species that can be considered as probiotics. Among 23 these, some Bacillus species have gained special attention due to their high antagonistic 24 activity to pathogens, production and availability of extracellular enzymes such as amylases, 25 cellulases, lipases and proteases, and ability to withstand high temperatures (Yu et al., 2009; 26 Banerjee and Ray, 2017). Bacillus subtilis is a Gram-positive, non-pathogenic, spore-forming 27 28 bacterium widely used for oral bacterial therapy, prophylaxis of gastrointestinal disorders, and 29 for its capacity to improved water quality and increased animal survival in aquaculture (Shen et al., 2010; Lee et al., 2017). Although B. subtilis is a probiotic widely recognized for its 30 31 presence in the gastrointestinal tract of animals, this bacterium can be found in the most 32 diverse environments (terrestrial or aquatic) due to the presence of strain-specific genes that enhance its adaptability (Earl et al., 2008). Thus, the objective of the present work was to 33

isolate *B. subtilis* strains adapted to the gastrointestinal tract of *L. vannamei*, carry out the probiotic characterization of the isolated strains and evaluate their effects when added to the feed regarding zootechnical performance, the proximate composition of muscle, lipid accumulation in hepatopancreas, and expression of genes related to digestion, amino acid metabolism and antioxidant defenses of Pacific white shrimp.

- 6
- 7

2. MATERIAL AND METHODS

8

9 2.1. Isolation of bacteria from the gastrointestinal tract of shrimp

Shrimps of approximately 7 g (n = 30) were kept in 150 L tanks at an average 10 temperature of 29 °C, salinity of 30 g.L⁻¹, alkalinity of 150 mg.L⁻¹ of CaCO₃ and total 11 suspended solids of an average of 500 mg.L⁻¹. Before removing the intestines, the shrimp 12 were fasted for two days to clean the gastrointestinal tract. To remove the intestines, the 13 shrimps were finished by hypothermia, sterilized in formaldehyde (50 mg.L⁻¹) for five 14 minutes to remove external bacteria and washed with sterile water for one minute to remove 15 the disinfectant (Boonthai et al., 2011). Intestines from four shrimp were pooled to form a 16 sample. In total, four samples were obtained, which were macerated in 0.9 % NaCl. 17 Afterwards, the samples were diluted (1:10; v/v) in 0.9 % NaCl for plating (in duplicate) on 18 LB solid medium (Luria-Bertani). After incubation for 16 h at 35 °C, bacterial colonies were 19 characterized by morphology, and the most frequent morphotypes were isolated for further 20 identification by molecular taxonomy and probiotic characterization. 21

22

23 2.2. Molecular identification

For molecular identification of bacterial colonies isolated from the gastrointestinal 24 25 tract of shrimp, the gene encoding ribonuclease III (rnc) was used, which is considered an essential gene for B. subtilis (Herskowitz and Bechhofer, 2000). Although rnc is not a gene 26 conventionally used in molecular taxonomy, Condon and Putzer (2002) performed a 27 phylogenetic analysis of several bacterial ribonucleases and concluded that *rnc* is among the 28 most conserved genes in the Eubacteria Kingdom. A previous analysis using the BLAST tool 29 from GenBank (https://blast.ncbi.nlm.nih.gov/Blast.cgi) showed that, although conserved, this 30 gene has variable regions that even allow the taxonomic differentiation of Bacillus species 31 32 (data not shown).

1 DNA from strains of different morphotypes was extracted by heating, in which bacterial cells were collected from each colony, diluted in 10 µL of ultrapure water and 2 incubated for five minutes at 95 °C. After a brief centrifugation, 1 µL of the supernatant was 3 directly used in a polymerase chain reaction (PCR) to amplify the *rnc* gene, using degenerate 4 primers designed for Bacillus species (Table 1). For all PCR reactions, Platinum Taq DNA 5 Polymerase (Invitrogen, Brazil) was used, according to the manufacturer's instructions. The 6 7 thermocycler was programmed for an initial denaturation at 94 °C for 2 min, followed by 35 cycles of 94 °C for 30 s (denaturation), 60 °C for 30 s (annealing) and 72 °C for 60 s 8 (extension), with a final extension at 72 °C for 5 min. All PCR products were analyzed in 1 % 9 agarose gel electrophoresis. The amplified fragments were purified using the Quick PCR 10 Purification Kit (Invitrogen, Brazil) and sequenced. The sequences obtained were submitted 11 12 to GenBank's BLAST tool to obtain the gene identity indexes.

13

Table 1. Degenerate primers used in PCR reactions to amplify the *rnc* gene from *Bacillus*species.

Primer	Sequences (5'-3')	Amplicon (nt) ⁶	-
RNC3-F1	tgwwtcaagcatttacrcattcatck	17 573	-
RNC3-R	attcwcgrttgtgvgcwggkcct	18	
		19	
RNC3-F2	tcatcktatgtgaatgagcatcgraa	548 20	
RNC3-R	attcwcgrttgtgvgcwggkcct	21	
		22	
RNC3-F3	yccgrcwatgagygaaggagakt	414 23	
RNC3-R	attcwcgrttgtgvgcwggkcct	24	

25

26 2.3. Phenotypic characterization of isolated strains

To analyze the phenotypic characteristics, the strains were first cultivated in Tryptone Soy Broth (TSB) for 16 h at 35 °C. Then, the Gram stain technique was used for morphological and structural characterization of the bacterial cell wall, classifying bacteria as Gram-positive or Gram-negative, based on their response to dyes (Tortora et al., 2012).

For analysis of exopolysaccharide (EPS) production, the congo red test was used. For this, the strains were cultivated in solid medium containing 0.8 g of congo red dye for 1 L of Agar Brain Heart Infusion (BHI), with the addition of 36 g of sucrose. The plate was

incubated for a period of 24 h at a temperature of 35 °C and for 48 h at room temperature, 1 following the methodology adapted from Freeman et al. (1989). EPS production is observed 2 3 when the inoculum turns black on the Congo Red Agar plate.

To test the ability to adhere, the strain was inoculated in TSB medium and kept at a 4 temperature of 35 °C for two days. After the first incubation period, 200 µL of the culture was 5 applied in triplicate in sterile polystyrene microplates containing 96 wells in a "u" shape and 6 7 incubated again at 35 °C for two days, without shaking. The inocula were then removed and the wells washed with sterile distilled water three times and kept in an oven at 60 °C for one 8 hour. After drying, 200 µL of 1 % crystal violet solution was aliquoted into each well and 9 incubated for one minute, followed by three more washes with distilled water and drying at 10 11 room temperature, according to the methodology adapted from Christensen et al. (1985). 12 Positive adhesion on polystyrene microplates is observed by the formation of aggregates and 13 purple coloration in the wells after drying.

The bacterial isolate was submitted for screening for extracellular enzymes with 14 15 potential relevance in digestive processes or virulence factors. Tests were carried out in accordance with established procedures in the literature and inoculated in specific media: 16 17 caseinase (milk Agar), gelatinase (Tryptone Soy Agar -TSA medium, supplemented with 0.5 % gelatin) and amylase (Nutrient Agar supplemented with 0.1 % soluble starch) (Rodrigues et 18 19 al., 1993); cellulase (Carboxymethylcellulose Agar-CMC) (Teather and Wood, 1982).

To test the hemolytic activity, the isolated strains were inoculated into a Shrimp 20 Hemolymph Agar medium, composed of 1 mL of *L. vannamei* shrimp hemolymph containing 21 200 ppm of Rose Bengal, following the methodology proposed by Chang et al. (2000). The 22 hemolytic zone can be seen by the formation of a halo around the inoculum. As a positive 23 control for hemolytic activity, the pathogen Vibrio parahaemolyticus IOC 18950 was used. 24

25 To assess the response to different antibiotics, the bacterial strain was grown in TSA 26 medium, incubated at 35 °C for 24 h and adjusted to 0.5 McFarland scale in 1 % saline solution using a spectrophotometer, with wavelength reading of 625 nm. One unit on this 27 scale corresponds approximately to a homogeneous suspension of E. coli of 1.5×10^8 cells per 28 29 mL. Afterwards, the strain was plated on Muller Hinton Agar (MH) using a sterile swab and commercial discs containing the antibiotics nalidixic acid (30 μ g), chloramphenicol (30 μ g), 30 florfenicol (30 µg) and oxytetracycline (30 µg) were placed on top of the inoculum. The plate 31 was incubated for 24 h at 35 °C and the diameter of the inhibition halo around the discs was 32 33 measured with a digital caliper. The results were analyzed according to resistance, moderate

susceptibility or strain susceptibility to antibiotics, according to the methodology proposed by
 Charteris et al. (1998).

The selected strains were also tested for tolerance to variations in temperature, pH and 3 salinity. As for temperature, the isolated strains were cultivated in LB medium and incubated 4 at 4 °C or 40 °C for a period of up to two days. Tolerance to different temperatures was 5 observed by the capacity of bacterial strains to grow, demonstrated by the turbidity of the 6 7 medium, according to the protocol adapted from Cai et al. (1999). As for pH, the strains were grown in LB medium adjusted to different pHs (5.0 and 9.0) and incubated for up to two days 8 9 at 35 °C. Tolerance to different pH ranges was observed by bacterial growth, evidenced by the turbidity of the medium (Cai et al., 1999). For the salinity test, the strains were grown in 10 LB medium adjusted for different salinities (0, 30 and 80 g.L⁻¹), and incubated at 35 °C for up 11 to two days. The growth in face of different salinity rates was observed by the turbidity of the 12 13 culture medium.

The antagonism test against the pathogens *Vibrio harveyi* ATCC 14126 and *V. parahaemolyticus* IOC 18950 was performed using the crossed streak methodology, adapted from Williston et al. (1947). *Vibrio* strains are inoculated in the central streak, while the bacterial strain tested is plated perpendicular to the central streak, with a one-centimeter distance. After incubation for 24 hours at 35 °C, it is evaluated whether there is a positive antagonism (with inhibition of the growth of the central streak) or negative antagonism (with the meeting of the perpendicular streak with the central).

21

22 2.4. Feed supplementation with the strain of *B. subtilis* isolated from the gastrointestinal tract
23 of *L. vannamei*

For the supplementation of L. vannamei feed, the strain of B. subtilis with the best 24 probiotic potential isolated from the gastrointestinal tract of shrimp was chosen. As a control 25 26 strain, B. subtilis KM0 (Altenbuchner, 2016) was used. This strain is derived from the B. subtilis 168 strain, widely recognized for its probiotic potential. To prepare the diet containing 27 the probiotics, cultures (3 mL) of the probiotic strains were added to erlenmayers (125 mL) 28 29 containing 50 mL of minimal salts medium (Anagnostopoulos and Spizizen, 1960) used in the protocols for the transformation of *B. subtilis*, with addition of glucose and casein hydrolyzate 30 as suggested by Riet et al. (2021). Probiotics were grown overnight at 35 °C with orbital 31 shaking at 250 rpm. After cultivation, the strains were standardized to an optical density 32 (OD_{600}) of 1.6. Then, the cultures were centrifuged at 5,000 × g for 10 min at 4 °C. After 33

centrifugation, the supernatant was discarded and 2 mL of saline solution (NaCl 0.9 %) was
added to wash the pellet, repeating this process twice (adapted from Zokaeifar et al., 2012b).
Then, the pellets were diluted in saline solution so that each gram of feed received 10¹⁰
colony forming units (CFU) of probiotics.

5

6 2.5. Experiment with *L. vannamei*

7 Shrimp juveniles were obtained from Aquatec (Rio Grande do Norte, Brazil) and the experiment performed in the Marine Station of Aquaculture from the Federal University of 8 Rio Grande (FURG, Brazil). Shrimps with an average weight of 0.63 ± 0.09 g were stored in 9 tanks with a useful volume of 150 L at a stoking density of 266 shrimps/m³. The entire 10 experiment was carried out in clear water where the animals were acclimated before starting 11 the experiment, without any addition of commercial probiotics. The physical and chemical 12 parameters of the water were evaluated daily. The temperature was maintained at 26 °C 13 throughout the experimental period. Salinity and dissolved oxygen were maintained at 30 g.L⁻ 14 ¹ and 6 ± 0.5 mg.L⁻¹, respectively. Aeration was constantly supplied to each tank through a 15 porous stone using an air blower. In addition, a daily water change (35 %) was performed in 16 17 order to keep the levels of nitrogen compounds below the minimum levels of tolerance of 18 shrimp.

The experimental design consisted of three treatments (carried out in quadruplicate). The experimental groups were divided into control, which received only commercial feed moistened with a 0.9 % NaCl solution (Feed), treatment with the *B. subtilis* KM0 strain (Feed+KM0) and the group with the isolated shrimp strain (hereinafter referred to as strain E) (Feed+E). Shrimps were fed twice a day with a commercial 38 % crude protein diet (Guabi, Brazil) for 45 days at a rate of 10 % of the estimated biomass at the beginning and reduced to 5 % at the end of the experiment.

The following formulas were used to calculate the zootechnical performance of the shrimp:

- Weight gain (g) = Pf - Pi, where Pf = final weight and Pi = initial weight;

- Biomass gain = (Average Pf x number of individuals at the end) - (Average Pi x initial

- 30 number of individuals);
- 31 Feed conversion ratio = feed intake/biomass gain;
- 32 Survival (%) = (final shrimp population \times 100)/initial population.
- 33

1 2.6. Tissue collection

At the end of the 45-day period, five shrimp were randomly removed from each tank, euthanized and stored at -20 °C to analyze the proximate composition from muscle tissue. In addition, shrimp from each treatment were separated for tissue collection for gene expression analysis. The hepatopancreas and muscle of four shrimps per replica (sixteen per treatment) were dissected and placed individually in 500 μ L of Trizol Reagent (Invitrogen, Brazil), according to the manufacturer's protocol. Whole shrimps were also separated for histological analysis.

9

10 2.7. Proximate composition analysis

Muscle from five shrimps from each treatment was used for proximate composition analysis. The analysis of the moisture content was made by drying the samples in an oven at 13 100 °C until constant weight. Protein content was determined by the Kjeldahl method and the total ether extract according to the Soxhlet method (AOAC, 2000). Ashes were obtained by incineration in a muffle for 6 h at 600 °C. Phosphorus analyzes were performed according to Silva and Queiroz (2002).

17

18 2.8. Gene expression analysis

RNA extraction was performed with Trizol Reagent (Invitrogen, Brazil) in the 19 proportion of 100 mg of tissue for each 1 mL of reagent. The extracted RNA was treated with 20 21 DNase I (Invitrogen, Brazil) and the concentration was determined spectrophotometrically 22 and the quality was determined by 1 % agarose gel electrophoresis. For cDNA synthesis, the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Brazil) was used. Gene 23 expression levels were determined by quantitative PCR (qPCR), according to Livak and 24 Schmittgen (2001), with n = 8. Seven genes were analyzed in the hepatopancreas, of which 25 five are related to digestion (amylase, amy; lipase, lip; trypsin, tryp; cathepsin B, cathB; 26 chymotrypsin, chymo) (Duan et al., 2018; Flores-Miranda et al., 2015), and two related to 27 amino acid metabolism (glutamine synthetase, gs; glutamate dehydrogenase, gdh) (Lage et 28 29 al., 2018). In muscle, two genes related to the antioxidant defense system were analyzed (glutathione peroxidase, gpx; superoxide dismutase, sod) (Sharawy et al., 2020). All primers 30 used in qPCRs are described in Table 2. Prior to gene expression analysis, the efficiency of 31 the primers in serial dilutions was performed. The chosen cDNA dilution was 1:10 and the 32 33 efficiency and expression reactions were performed with the PowerUP SYBR Green Master Mix kit (Applied Biosystems, Brazil), following the programming of 50 °C for 2 min, 95 °C
for 2 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 15 min. The 40S-s24, ef1α
and 60S-121 reference genes were used for the normalization of gene expression data. To
determine the stability of the reference genes, the software geNorm VBA applet for Microsoft
Excel (Vandesompele et al., 2002) was used. All reactions were performed in QuantStudio 3
Real-Time PCR (Applied Biosystems, Brazil).

7

8	Table 2.	Analyzed	genes and	primers	used in	qPCR reactions.

Gene	Sense (5'-3')	Antisense (5'-3')	Amplicon (nt)	GenBank
amy	ctctggtagtgctgttggct	tgtcttacgtgggactggaag	116	AJ133526
lip	actgtctcctctgctcgtc	atggtttctggaataggtgttt	131	XM027365317
tryp	cggagagctgccttaccag	tcggggttgttcatgtcctc	141	X86369
chymo	ggctctcttcatcgacg	cgtgagtgaagaagtcgg	182	XM037943862
cathB	ggatgtaacggaggcttc	ctgtatgctttgcctcca	248	XM027359505
gdh	aggttgtggaggaccagttg	ccgtggatcatctcgtaggt	166	EU496492
gs	ttccgtctcctgaaataccg	aggagccttgggaatgaagt	193	JN620540
gpx	agggacttccaccagatg	caacaactccccttcggta	117	AY973252
sod	tggagtgaaaggctctggct	acggaggttcttgtactgaaggt	175	DQ005531
40S-s24	caggccgatcaactgtcc	caatgagagcttgcctttcc	204	XM027373709
60S-121	gttgacttgaagggcaatg	cttcttggcttcgattctg	246	XM027359925
efla	ccaccctggccagattca	gcgaacttgcaggcaatg	75	DQ858921

9

10 2.9. Histological analysis

Whole shrimps were injected with Davidson's solution (11.5 % acetic acid, 22 % 11 12 formalin, 33 % ethanol) and kept in this condition for 48 hours. After this period, hepatopancreas were dissected and transferred to a container containing 70% ethanol. After 13 14 successive dehydrations in increasing concentrations of ethanol, hepatopancreas were clarified in xylene and embedded in Paraplast at 60 °C. The embedded hepatopancreas were 15 sectioned into 3 µm thick slices. Histological sections were stained with Hematoxylin and 16 Eosin (Bell and Lightner, 1988) to count lipid storage cells. Lipid vacuoles were observed and 17 18 counted using a compound microscope at $40 \times$ magnification.

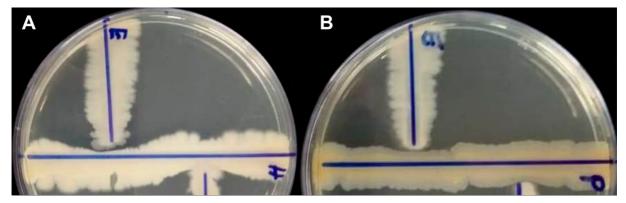
- 1
- 2 2.10. Statistical analysis

To test for possible differences between treatments, one-way analysis of variance (ANOVA) was used. Normality and heterogeneity were assessed using the Shapiro-Wilk and Levene tests, respectively. For each case, when significance was detected among treatments, a later comparison of means was performed using Tukey's test. All numerical data were expressed as mean \pm standard error. Differences were considered statistically significant when p < 0.05.

9

10 **3. RESULTS**

11


3.1. Isolation and identification of bacterial strains from the gastrointestinal tract of *L*. *vannamei*

Four strains characterized as Gram-positive were isolated from the gastrointestinal tract of shrimp. The PCR products for the *rnc* gene of these four strains were sequenced and the amplicon obtained from strain E showed 100 % identity with the *B. subtilis rnc* gene sequence available in GenBank (data not shown). Strain E was chosen for the other experiments because it belongs to a species recognized by the GRAS (Generally Recognized as Safe) list of the North American FDA (US Food & Drug Administration; https://www.fda.gov/food/food-ingredients- packaging/generally-recognized-safe-gras).

21

22 3.2. Phenotypic characterization of the strain E of *B. subtilis*

Strain E showed positive adherence to the polystyrene microplate but was not able to 23 produce exopolysaccharides (EPS). As for the enzymatic activity, strain E was not able to 24 25 produce gelatinase and cellulase, but activity was detected for caseinase and amylase. Also, strain E did not show β -hemolysis activity. Stress resistance tests showed that strain E can 26 27 grow at 40 °C, but not at 4 °C. As for pH, strain E grows at pH 9, but does not grow at pH 5. Regarding salinity, strain E was able to grow in all tested salinities (0, 30 and 80 $g.L^{-1}$). The 28 29 antibiogram showed that strain E is sensitive to the antibiotics tested (nalidixic acid, chloramphenicol, florfenicol and oxytetracycline). The pathogen antagonism test showed that 30 strain E presents positive antagonism to both V. harveyi and V. parahaemolyticus (Figure 1). 31 32

Figure 1. Antagonism test of *Bacillus subtilis* strain E (vertical streak) to *Vibrio harveyi* (horizontal streak in A) and *Vibrio parahaemolyticus* (horizontal streak in B).

1 2

5 3.3. Zootechnical performance and proximate composition of muscle tissue

6 The results of the zootechnical performance are shown in Table 3. There were no 7 significant differences among the experimental groups for all analyzed variables (p > 0.05).

8

9 Table 3. Zootechnical performance of *Litopenaeus vannamei* fed with commercial feed or
10 commercial feed supplemented with different *Bacillus subtilis* strains.

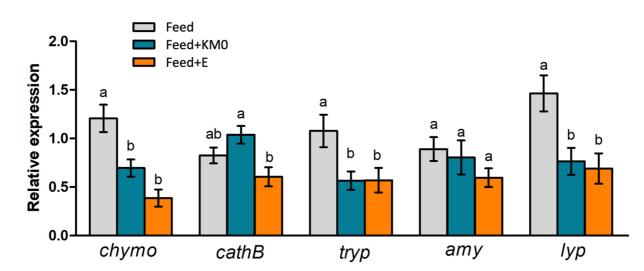
	Feed	Feed+KM0	Feed+E
Initial weight (g)	0.61 ± 0.06	0.62 ± 0.05	0.66 ± 0.14
Final weight (g)	5.44 ± 0.49	5.09 ± 0.45	4.90 ± 0.53
Weight gain (g)	4.84 ± 0.49	4.47 ± 0.42	4.27 ± 0.66
Feed conversion ratio	1.39 ± 0.13	1.50 ± 0.15	1.60 ± 0.24
Survival	100 %	100 %	100 %

11

As shown in Table 4, no significant differences were detected among the experimental groups regarding body moisture, crude protein, ash and phosphorus (p > 0.05). However, shrimp fed the diet supplemented with E strain had significantly higher lipid content compared to shrimp fed the diet supplemented with the KM0 strain (p < 0.05).

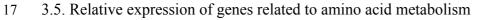
16

Table 4. Proximate composition of *Litopenaeus vannamei* muscle fed with commercial feed
or commercial feed supplemented with different *Bacillus subtilis* strains.


	Feed	Feed+KM0	Feed+E
Moisture	74.56 ± 0.63	73.97 ± 0.22	74.77 ± 0.82
Ash	1.63 ± 0.27	1.53 ± 0.23	1.54 ± 0.39
Protein	18.97 ± 1.74	19.26 ± 0.44	$18,\!86\pm0.87$
Lipid	0.75 ± 0.65^{ab}	0.47 ± 0.43^{b}	1.22 ± 1.56^{a}
Phosphorus	79.24 ± 9.03	98 ± 1.41	102.86 ± 5.79

1 Different letters represent statistically significant differences (p < 0.05).

2


3 3.4. Relative expression of genes related to digestion

The relative expression of *cathB*, *chymo*, *tryp*, *lip* and *amy* genes is shown in Figure 2. Only *amy* was not altered with the addition of *B. subtilis* strains to the diet. The *chymo*, *tryp* and *lip* genes had their expression significantly reduced (p < 0.05) in both Feed+KM0 and Feed+E treatments. The *cathB* gene had its expression reduced only in the Feed+E treatment (p < 0.05) in comparison with Feed+KM0 treatment.

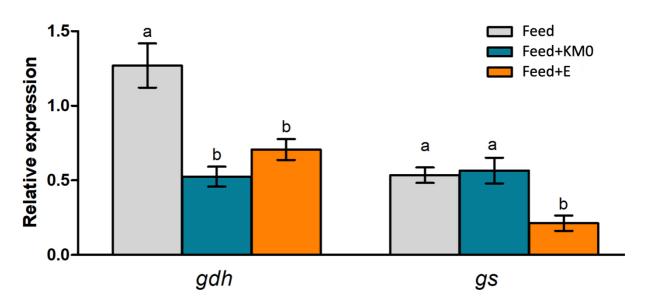
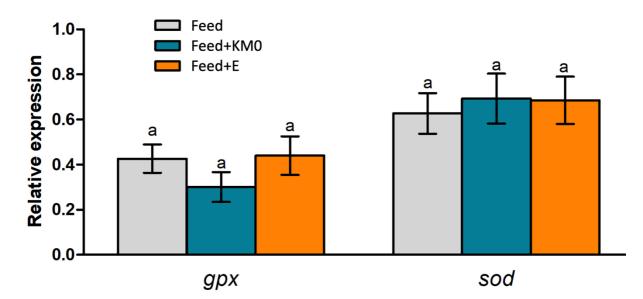

10

Figure 2. Relative expression of genes related to digestion in *Litopenaeus vannamei* hepatopancreas fed diets supplemented with different strains of *Bacillus subtilis*. Feed: shrimp fed only commercial feed; Feed+KM0: shrimp fed commercial feed with *B. subtilis* KM0; Feed+E: shrimp fed commercial feed with *B. subtilis* strain E. One-way ANOVA was used for each gene separately. Different letters represent statistically significant differences (p < 0.05).

1 The expression of *gs* and *gdh* are shown in Figure 3. The *gdh* gene had its expression 2 reduced in both treatments with *B. subtilis* strains (p < 0.05), while *gs* was reduced only in the 3 Feed+E treatment (p < 0.05).

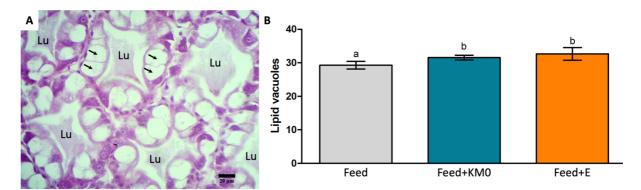

Figure 3. Relative expression of genes related to amino acid metabolism in *Litopenaeus vannamei* hepatopancreas fed diets supplemented with different strains of *Bacillus subtilis*. Feed: shrimp fed only commercial feed; Feed+KM0: shrimp fed commercial feed with *B*. *subtilis* KM0; Feed+E: shrimp fed commercial feed with *B*. *subtilis* strain E. One-way ANOVA was used for each gene separately. Different letters represent statistically significant differences (p < 0.05).

12

5

13 3.6. Relative expression of genes related to antioxidant defenses

14 The expression of gpx and *sod* are shown in Figure 4. The treatments with the strains 15 of *B. subtilis* did not produce alterations in the two analyzed genes (p > 0.05).



1

Figure 4. Relative expression of genes related to antioxidant defenses in *Litopenaeus vannamei* muscle fed diets supplemented with different strains of *Bacillus subtilis*. Feed: shrimp fed only commercial feed; Feed+KM0: shrimp fed commercial feed with *B. subtilis* KM0; Feed+E: shrimp fed commercial feed with *B. subtilis* strain E. One-way ANOVA was used for each gene separately. Equal letters represent the absence of statistical differences (p > 0.05).

9 3.7. Histology of the hepatopancreas

The result of lipid vacuole counts in shrimp hepatopancreas is shown in Figure 5. Shrimp fed with diet supplemented with both *B. subtilis* KM0 and *B. subtilis* strain E had a higher number of lipid vacuoles $(31.55 \pm 0.74 \text{ and } 32.68 \pm 1.89, \text{ respectively})$ compared to the control treatment (Feed; 29.28 ± 1.13).

15

Figure 5. Histological analysis of *Litopenaeus vannamei* hepatopancreas. A) Illustrative
 photo of the histological sections of shrimp hepatopancreas (40× magnification). Lu: lumen of
 the hepatopancreatic tubules; arrows indicate some examples of lipid vacuoles; B) Graphic
 46

representation of lipid vacuole counts. Feed: shrimp fed only commercial feed; Feed+KM0: shrimp fed commercial feed with *Bacillus subtilis* KM0; Feed+E: shrimp fed commercial feed with *B. subtilis* strain E. Data are expressed as mean \pm standard error from four independent replicates. Different letters represent statistically significant differences (One way ANOVA; p < < 0.05).

6 7

4. DISCUSSION

8 In the first stage of this study, a bacterial strain with probiotic potential was isolated from the gastrointestinal tract of shrimp L. vannamei. This strain, called strain E, was 9 molecularly identified as a strain of *B. subtilis*, a species recognized as GRAS by the US 10 11 FDA. Considering that probiotic bacteria tend to adapt to specific environments due to the 12 presence of genes related to adaptability, it can be concluded that probiotics applied in shrimp farming isolated from shrimp itself can have a greater impact on the benefits already known 13 14 to be produced by such bacteria. In fact, the isolation of probiotics from shrimp has been 15 shown to be a valid practice for shrimp farming, enhancing the control or inhibition of pathogenic bacteria, zootechnical performance, digestive enzyme activity and host immune 16 responses against pathogens or physical stress (Li et al., 2021; Kim et al., 2020; Wang et al., 17 2020; Zuo et al., 2019). 18

Strain E was phenotypically characterized in terms of its probiotic potential. First, it is 19 necessary to assess the presence of certain virulence factors in candidate probiotic strains. 20 One of these is gelatinase activity. This enzyme is an extracellular endopeptidase that 21 promotes the hydrolysis of bioactive compounds such as gelatin, collagen and hemoglobin, 22 being considered a harmful enzymatic activity in strains intended for use in aquaculture 23 (Muñoz-Atienza et al. 2013). Strain E did not show gelatinase activity, which is a positive 24 25 characteristic of this strain. Another important virulence factor is the β -hemolysis activity, 26 which makes iron available to the microorganism and can cause anemia and edema in the case of a vertebrate host (Vesterlund et al., 2007). Strain E also did not show β -hemolysis activity, 27 28 which is another positive factor to be considered. In addition to the virulence factors that need to be absent, the probiotic strain must also have additional characteristics, such as the 29 expression of extracellular enzymes and adhesion to surfaces. The presence of enzymes such 30 as caseinase and amylase, for example, is a positive factor for probiotic candidates, as it 31 32 makes nutrients bioavailable, aiding in the digestive processes of the hosts (Banerjee and Ray,

2017). Strain E showed both caseinase and amylase activity, making it a candidate for a
 probiotic that can help in the digestive processes of shrimp.

3 Although strain E does not produce exopolysaccharides (EPS), it was able to adhere to the polystyrene plate. Adhesiveness is an important feature in probiotic candidates, as it is 4 well established that bacteria capable of colonizing the surface of the intestinal mucosa are 5 more crucial in maintaining nutrition, physiology and animal immunity than are free-living 6 7 bacteria (Banerjee and Ray, 2017). Bacterial adhesion can occur non-specifically, when based on physicochemical factors, or specifically, involving adhesin molecules on the surface of 8 adherent bacteria and receptor molecules on epithelial cells (Salminen et al., 1996). 9 Furthermore, the adherence to the intestinal tract of hosts by probiotic bacteria creates a 10 11 competitive exclusion, preventing the establishment of pathogenic bacteria and reducing their 12 harmful effects (Vieira and Pereira, 2016).

13 The stability of bacterial strains is an important factor for survival in a culture environment and for colonizing the host's gastrointestinal tract. Bacillus species are known to 14 15 withstand high temperatures and drying processes, which makes them widely used as probiotics in shrimp feed (Yu et al., 2009). Stress tolerance tests showed that strain E can 16 17 grow at high temperature (40 °C), as well as at basic pH and in a wide range of salinity (from 0 to 80 g.L⁻¹). Additionally, this strain was sensitive to different antibiotics, which 18 19 demonstrates the absence of resistance genes. This feature is important because it reduces the 20 possibility of the occurrence of horizontal transfer of genes related to antimicrobial resistance to other microorganisms present in the environment. Also, strain E showed positive 21 antagonism against V. harveyi and V. parahaemolyticus. Vibrio species are widely distributed 22 23 in marine and estuarine environments and can act as agents of food-borne diseases, impacting public health (Silveira et al., 2016). In aquaculture, V. harveyi and V. parahaemolyticus have 24 been considered as opportunistic pathogens, which can affect a range of marine species, 25 26 causing high mortality in crops and may even affect the health of consumers (Cheng et al., 27 2010; Zokaeifar et al., 2012a; Silveira et al., 2016). Hostins et al. (2017) showed that the 28 addition to water of a mixture of commercial probiotics containing *Bacillus* species decreased 29 the abundance of *Vibrio* sp. in the gastrointestinal tract of *L. vannamei* raised in biofloc (BFT) or clear water. Thus, strain E can be considered an alternative tool for combating and 30 preventing vibriosis that commonly affect shrimp farms. 31

In the second stage of this study, an experiment was carried out with *L. vannamei*, where parameters such as proximate composition of muscle tissue, zootechnical performance,

1 lipid accumulation in hepatopancreas and expression of genes related to digestion and antioxidant defenses were evaluated. The experiment evaluated three experimental groups for 2 45 days. The first group of shrimps was fed only commercial feed. The second group was fed 3 a commercial feed supplemented with the KM0 strain, originated from B. subtilis 168 and 4 considered as a positive control. The third group was fed with feed supplemented with strain 5 E. After 45 days, no difference was observed between the experimental groups in terms of 6 7 zootechnical performance. Thus, it can be inferred that strain E does not affect shrimp growth as strain KM0, already recognized for its probiotic potential. 8

9 The analysis of the proximate composition of the muscular tissue of the shrimps in group E showed a significant increase of 2.6 times in the amount of lipids, when compared to 10 11 the KM0 group. Likewise, the count of lipid vacuoles in the hepatopancreas showed that both 12 strains of *B. subtilis* used in the present study increased the concentration of lipids in that 13 tissue. Although, in the present study, a test of lipolytic activity of strain E was not performed, it is known that B. subtilis secretes two types of lipases (lipA and lipB), whose genes are 14 15 differentially expressed depending on the growth conditions (Eggert et al., 2003). The observation that shrimp fed the diet supplemented with E strain is favoring the concentration 16 17 of lipids in both muscle and hepatopancreas may be an interesting feature from a commercial 18 point of view, since shrimps have been considered an important source of functional lipids, 19 especially phospholipids (Sun et al., 2020). Interestingly, Tsai et al. (2019) reported that 20 Bacillus subtilis E20 increased apparent digestibility coefficients of L. vannamei, showing that supplementation with the probiotic enhanced the absorption of nutrients with consequent 21 increase in growth performance. However, the authors did not observe an increase in the 22 concentration of lipids in the shrimp tissues. This observation shows that each probiotic strain 23 can generate specific effects on its hosts. 24

To evaluate the response of the shrimp to the addition of *B. subtilis* strains in the diet, 25 26 the expression of genes related to digestion, amino acid metabolism, and antioxidant defenses 27 were quantified. Relative expression of genes related to antioxidant defenses (gpx and sod) were not altered by treatments with probiotics. However, the digestion-related genes showed 28 29 an almost homogeneous expression pattern of decreased transcriptional activity. Except for amy, which was not altered by the treatments, all the others had their expression reduced with 30 the addition of probiotics in the shrimp diet. The *chymo*, *tryp* and *lip* genes were significantly 31 downregulated in both probiotic treatments. As previously mentioned, Bacillus species are 32 capable of producing and secreting lipases. Likewise, these bacteria can also secrete high 33

amounts of proteolytic enzymes. According to Contesini et al. (2018), bacteria of the genus 1 2 *Bacillus* are among those that most produce and secrete proteases with outstanding properties such as high stability in adverse environmental conditions such as extremes of temperature 3 and pH, being resistant to the presence of organic solvents, detergents, and oxidizing agents. 4 In a scenario where probiotic bacteria produce and secrete significant amounts of proteases 5 and lipases, it is expected that the host intestine will decrease the production and secretion of 6 7 such enzymes, starting with a decrease in the transcription rate of endogenous related genes. An interesting difference between the strain KMO and the strain E was observed in the 8 9 expression of the *cathB* gene, which encodes Cathepsin B. This cysteine protease was first 10 identified in L. vannamei by Stephens et al. (2012). It is an enzyme that participates not only 11 in the intracellular hydrolysis of proteins, but also in the extracellular hydrolysis of proteins 12 soon after food ingestion, increasing the capacity of amino acid absorption by the intestine. 13 The fact that the *cathB* gene was significantly reduced in shrimp treated with strain E in relation to strain KM0 indicates an interesting difference between the two probiotic strains. 14 15 Although there is a lot of information about the production of proteases in *Bacillus* species, the opposite occurs when it comes to a more specific group such as cysteine proteases. 16 17 Recently, Yamazawa et al. (2022) identified the yabG gene product of B. subtilis as a cysteine 18 peptidase, which is related to spore formation. Thus, B. subtilis is also capable of producing 19 and secreting cysteine proteases, and strain E seems to differ from strain KM0 in this specific 20 characteristic.

Regarding genes related to amino acid metabolism, the *gdh* gene had its transcription 21 22 rate downregulated in shrimp hepatopancreas in both treatments with probiotics. The enzyme glutamate dehydrogenase is present in the mitochondrial matrix of eukaryotic cells and 23 catalyzes the oxidative deamination of glutamate to form α -ketoglutarate which can be used 24 as fuel for the Krebs cycle to drive the electron transport chain and production of ATP by 25 26 oxidative phosphorylation (Dawson and Storey, 2012). Furthermore, this enzyme is linked to 27 several cellular processes, including ammonia metabolism, acid-base balance, redox homeostasis, lactate production, and lipid biosynthesis via oxidative generation of citrate 28 29 (Plaitakis et al., 2017). Considering that glutamate dehydrogenase induces the production of Krebs cycle intermediates, and that one of these intermediates (citrate) is used for the 30 synthesis of lipids, it is reasonable to hypothesize that the decrease in the transcription of the 31 gdh gene is a response to an already high concentration of lipids in the hepatopancreas of 32 shrimp that were treated with the probiotic strains. Another gene related to amino acid 33

metabolism analyzed in the present study was gs. This gene encodes the enzyme glutamine 1 synthetase, which catalyzes the formation of glutamine from glutamate and NH_4^+ . Qiu et al. 2 (2018) considered this enzyme as an important marker of ammonia stress in L. vannamei. 3 These authors demonstrated that expression of gs is increased in shrimp exposed to high 4 concentrations of ammonium and that hepatopancreas plays a key role in the response to 5 stress caused by excess nitrogen. In the present study a significant decrease in gs expression 6 7 was observed only in the hepatopancreas of shrimp treated with strain E, and this is another interesting difference between the two probiotic strains studied here. It is possible that the 8 9 strain E has a greater capacity than strain KM0 to reduce the nitrogen compounds present in the rearing water and, thus, reduce the stress in shrimp. In fact, it is well established that the 10 11 administration of *B. subtilis* strains confers benefits in maintaining the quality of rearing water 12 in aquaculture (for review see Hlordzi et al., 2020).

13 In conclusion, in the present study, a strain of *B. subtilis* (strain E) was isolated from the gastrointestinal tract of L. vannamei, which has several phenotypic characteristics that 14 15 characterize it as a potential probiotic. In the functional experiment with shrimp, the supplementation of the feed with strain E did not change the zootechnical performance of the 16 17 shrimp but increased the lipid concentration in muscle and hepatopancreas. Additionally, 18 exposure to the strain E strongly decreased the expression of genes related to digestion and amino acid metabolism, suggesting that this potential probiotic can facilitate digestive 19 20 processes and nutrient absorption as well as minimize the toxic effects caused by nitrogenous compounds present in rearing water. Thus, strain E can be considered an interesting tool in 21 shrimp farming in terms of better use of nutrients present in the feed, as well as in the 22 maintenance of water quality that can negatively impact shrimp farming. 23

24

25 ACKNOWLEDGEMENTS

The authors are grateful to all team members of the Laboratory of Molecular Biology (Institute of Biological Sciences, Federal University of Rio Grande - FURG, Brazil) who helped during all stages of the experiment with *L. vannamei* and tissue collection. This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 434259/2018-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Financial Code 001). L. F. Marins, O. V. Sousa, M. B. Tesser, L. A. Romano and W. Wasielesky are research fellows from Conselho Nacional de Desenvolvimento Científico

1	e Tecnológico (CNPq; Proc. 309634/2018-0, 309926/2018-1, 304474/2020-7, 301245/2016-9
2	and 310652/2017-0, respectively).
3	
4	CONFLICT OF INTEREST
5	The authors declare no conflict of interest.
6	
7	REFERENCES
8	
9	Anagnostopoulos, C., Spizizen, J, 1960. Requirements for transformation in Bacillus subtilis.
10	J. Bacteriol. 81, 741-746. https://doi.org/10.1128/JB.81.5.741-746.1961
11	Altenbuchner, J, 2016. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system.
12	Appl. Environ. Microbiol. 82, 17, 5421–5427. https://doi.org/10.1128/AEM.01453-16
13	AOAC, 2000. Official Methods of Analysis, 17th ed. AOAC (CDROM), Washington, DC.
14	Azeredo, R, Machado, M, Kreuz, E, Wuertz, S, Oliva-Teles, A, Enes, P, Costas, B, 2017. The
15	European seabass (Dicentrarchus labrax) innate immunity and gut health are
16	modulated by dietary plant-protein inclusion and prebiotic supplementation. Fish
17	Shellfish Immunol., 60, 78-87. https://doi.org/10.1016/j.fsi.2016.11.019
18	Banerjee, G, Ray, AK, 2017. The advancement of probiotics research and its application in
19	fish farming industries. Res. Vet. Sci. 115, 66–77.
20	https://doi.org/10.1016/j.rvsc.2017.01.016
21	Bell, KL, Smith, VJ, 1993. In vitro superoxide production by hyaline cells of the shore crab
22	Carcinus maenas (L.). Dev. Comp. Immunol., 17, 3, 211–219.
23	https://doi.org/10.1016/0145-305x(93)90040-w
24	Boonthai, T, Vuthiphandchai, V, Nimrat, S, 2011. Probiotic bacteria effects on growth and
25	bacterial composition of black tiger shrimp (Penaeus monodon). Aquac. Nutr., 17, 6,
26	634–644. https://doi.org/10.1111/j.1365-2095.2011.00865.x
27	Cai, Y, Suyanandana, P, Saman, P, Benno, Y, 1999. Classification and characterization of
28	lactic acid bacteria isolated from the intestines of common carp and freshwater
29	prawns. J. Gen. Appl. Microbiol., 45, 4, 177–184. https://doi.org/10.2323/jgam.45.177
30	Chang, CI, Liu, WY, Shyu, CZ, 2000. Use of prawn blood agar hemolysis to screen for
31	bacteria pathogenic to cultured tiger prawns Penaeus monodon. Dis. Aquat. Organ.,
32	43, 2, 153–157. <u>https://doi.org/10.3354/dao043153</u>

- Charteris, WP, Kelly, PM, Morelli, L, Collins, JK, 1998. Antibiotic susceptibility of
 potentially probiotic *Lactobacillus* strains. J. Food Prot., 61, 12, 1636–1643.
 https://doi.org/10.4315/0362-028x-61.12.1636
- Cheng, S, Zhang, WW, Zhang, M, Sun, L, 2010. Evaluation of the vaccine potential of a
 cytotoxic protease and a protective immunogen from a pathogenic *Vibrio harveyi*strain. Vaccine, 28, 4, 1041–1047. <u>https://doi.org/10.1016/j.vaccine.2009.10.122</u>
- Chiu, CH, Guu, YK, Liu, CH, Pan, TM, Cheng, W, 2007. Immune responses and gene
 expression in white shrimp, *Litopenaeus vannamei*, induced by *Lactobacillus plantarum*. Fish Shellfish Immunol., 23, 2, 364–77.
 https://doi.org/10.1016/j.fsi.2006.11.010
- Condon, C, Putzer, H, 2002. The phylogenetic distribution of bacterial ribonucleases. Nucleic
 Acids Res., 30, 24, 5339–5346. <u>https://doi.org/10.1093/nar/gkf691</u>
- Contesini, FJ, Melo, RR, Sato HH, 2018. An overview of *Bacillus* proteases: from production
 to application. Crit. Rev. Biotechnol., 38, 3, 321–334.
 https://doi.org/10.1080/07388551.2017.1354354
- Christensen, GD, Simpson, WA, Younger, JJ, Baddour, LM, Barrett, FF, Melton, DM,
 Beachey, EH, 1985. Adherence of coagulase-negative staphylococci to plastic tissue
 culture plates: A quantitative model for the adherence of staphylococci to medical
 devices. J. Clin. Microbiol., 22, 6, 996–1006. <u>https://doi.org/10.1128/jcm.22.6.996-</u>
 <u>1006.1985</u>
- Dawson, NJ, Storey, KB, 2012. An enzymatic bridge between carbohydrate and amino acid
 metabolism: Regulation of glutamate dehydrogenase by reversible phosphorylation in
 a severe hypoxia-tolerant crayfish. J. Comp. Physiol. B: Biochem. Syst. and Environ.
 Physiol., 182, 3, 331–340. <u>https://doi.org/10.1007/s00360-011-0629-4</u>
- Duan, Y., Wang, Y., Dong, H., Ding, X., Liu, Q., Li, H., Zhang, J., Xiong, D., 2018. Changes
 in the intestine microbial, digestive, and immune-related genes of *Litopenaeus vannamei* in response to dietary probiotic *Clostridium butyricum* supplementation.
 Front. Microbiol. 9, 2191. <u>https://doi.org/10.3389/fmicb.2018.02191</u>
- Earl, AM, Losick, R, Kolter, R, 2008. Ecology and genomics of *Bacillus subtilis*. Trends
 Microbiol., 16, 6, 269–275. <u>https://doi.org/10.1016/j.tim.2008.03.004</u>
- Eggert, T, Brockmeier, U, Dröge, MJ, Quax ,WJ, Jaeger, KE, 2003. Extracellular lipases from
 Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid

- 1
 supply and external pH. FEMS Microbiol. Lett., 225, 2, 319–

 2
 324. https://doi.org/10.1016/S0378-1097(03)00536-6
- Estruch, G, Collado, MC, Monge-Ortiz, R, Tomás-Vidal, A, Jover-Cerdá, M, Peñaranda, DS,
 Martínez, GP, Martínez-Llorens, S, 2018. Long-term feeding with high plant protein
 based diets in gilthead seabream (*Sparus aurata*, L.) leads to changes in the
 inflammatory and immune related gene expression at intestinal level. BMC Veter. Res.
- 7 14, 302. <u>https://doi.org/10.1186/s12917-018-1626-6</u>
- FAO, 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action.
 Rome. <u>https://doi.org/10.4060/ca9229en.</u>
- Flores-Miranda, M.C., Luna-González, A., Cortés-Espinosa, D.V., Álvarez-Ruiz, P., Cortés Jacinto, E., Valdez-González, F.J., Escamilla-Montes R., González-Ocampo, H.A.,
 2015. Effects of diets with fermented duckweed (*Lemna* sp.) on growth performance
 and gene expression in the Pacific white shrimp, *Litopenaeus vannamei*. Aquacult.
 Int., 23: 547–561. https://doi.org/10.1007/s10499-014-9835-x
- Freeman, DJ, Falkiner, FR, Keane, CT, 1989. New method for detecting slime production by
 coagulase negative staphylococci. J. Clin. Pathol., 42, 8, 872–874.
 <u>https://dx.doi.org/10.1136%2Fjcp.42.8.872</u>
- Herskowitz, MA, Bechhofer, DH, 2000. Endoribonuclease RNase III is essential in *Bacillus subtilis*. Mol. Microbiol., 38, 1027–1033. <u>https://doi.org/10.1046/j.1365-</u>
 <u>2958.2000.02185.x</u>
- Hlordzi, V, Kuebutornye, FKA, Afriyie, G, Abarike, ED, Lu, Y, Chi, S, Anokyewaa, MA,
 2020. The use of *Bacillus* species in maintenance of water quality in aquaculture: A
 review. Aquac. Rep., 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503
- Hostins, B, Lara, G, Decamp, O, Cesar, DE, Wasielesky Jr, W, 2017. Efficacy and variations
 in bacterial density in the gut of *Litopenaeus vannamei* reared in a BFT system and in
 clear water supplemented with a commercial probiotic mixture. Aquaculture, 480, 58–
 64. https://doi.org/10.1016/j.aquaculture.2017.07.036
- Karim, M, Sarwer, RH, Phillips, M, Belton, B, 2014. Profitability and adoption of improved
 shrimp farming technologies in the aquatic agricultural systems of southwestern
 Bangladesh. Aquaculture, 428–429, 61–70.
 https://doi.org/10.1016/j.aquaculture.2014.02.029
- Kim, YO, Mahboob, S, Viayaraghavan, P, Biji, D, Al-Ghanim, KA, Al-Misned, A, Ahmed,
 Z, Kwon, J, Na, SW, Kim, H, 2020. Growth promoting activity of *Penaeus indicus* by

secondary metabolite producing probiotic bacterium *Bacillus subtilis* isolated from the
 shrimp gut. J. King. Saud. Univ. Sci., 32, 2, 1641–1646.
 <u>https://doi.org/10.1016/j.jksus.2019.12.023</u>

Lage, LPA, Serusier, M, Weissman, D, Putrino, SM, Baron, F, Guyonvarch, A, Tournat, M, Nunes, AJP, Panserat, S, 2018. Metabolic programming in juveniles of the whiteleg shrimp (*Litopenaeus vannamei*) followed by an early feed restriction at post-larval stage. Aquaculture, 495, 328–338. <u>http://dx.doi.org/10.1016/j.aquaculture.2018.05.041</u>

- Lee, S, Katya, K, Park, Y, Won, S, Seong, M, Hamidoghli, A, Bai, SC, 2017. Comparative
 evaluation of dietary probiotics *Bacillus subtilis* WB60 and *Lactobacillus plantarum*KCTC3928 on the growth performance, immunological parameters, gut morphology
 and disease resistance in Japanese eel, *Anguilla japonica*. Fish Shellfish Immunol., 61,
 201–210. https://doi.org/10.1016/j.fsi.2016.12.035
- Li, H, Fan, S, Gao, Y, Cai, Y, Chu, Z, Wang, L, 2021. Evaluation of modulatory properties of
 Bacillus cereus isolated from the gut of *Litopenaeus vannamei* on growth, intestinal
 morphology, digestive enzyme activities, immune responses and disease resistance of
 Litopenaeus vannamei. Aquac. Res. 52, 1299–1310. https://doi.org/10.1111/are.14988
- Livak, KJ, Schmittgen, TD, 2001. Analysis of relative gene expression data using real-time
 quantitative PCR and the double delta CT method. Methods 25, 4, 402–408.
 https://doi.org/10.1006/meth.2001.1262
- Muñoz-Atienza, E, Gómez-Sala, B, Araújo, C, Campanero, C, del Campo, R, Hernández, PE,
 Herranz, C, Cintas, LM, 2013. Antimicrobial activity, antibiotic susceptibility and
 virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as
 probiotics in aquaculture. BMC Microbiol., 13, 15. <u>https://doi.org/10.1186/1471-2180-</u>
 13-15
- Nisar, U, Zhang, H, Navghan, M, Zhu, Y, Mu, Y, 2021. Comparative analysis of profitability
 and resource use efficiency between *Penaeus monodon* and *Litopenaeus vannamei* in
 India. Plos One, 16(5), e0250727. <u>https://doi.org/10.1371/journal.pone.0250727</u>
- Penda, S.T, Unaji, G.P, Odoenmenem, IU, 2013. Profitability analysis of fish production from
 concrete pond system in Benue State, Nigeria. International Journal of Research in
 Social Sciences, (4): 64–70.
- Plaitakis, A, Kalef-Ezra, E, Kotzamani, D, Zaganas, I, Spanaki, C, 2017. The glutamate
 dehydrogenase pathway and its roles in cell and tissue biology in health and disease.
 Biology, 6, 1, 11. <u>https://doi.org/10.3390/biology6010011</u>

- Qiu, L, Shi, X, Yu, S, Han, Q, Diao, X, Zhou, H, 2018. Changes of ammonia-metabolizing
 enzyme activity and gene expression of two strains in shrimp *Litopenaeus vannamei* under ammonia stress. Front. Physiol., 9, 211.
 https://doi.org/10.3389/fphys.2018.00211
- Riet, J, Costa-Filho, J, Dall'Agno, L, Medeiros, L, Azevedo, R, Nogueira, LF, Maggioni, R,
 Pedrosa, VF, Romano, LA, Altenbuchner, J, Wasielesky, W, Marins, LF, 2021. *Bacillus subtilis* expressing double-strand RNAs (dsRNAs) induces RNA interference
 mechanism (RNAi) and increases survival of WSSV-challenged *Litopenaeus vannamei.* Aquaculture, 541, 736834.
- 10 <u>https://doi.org/10.1016/j.aquaculture.2021.736834</u>
- Rodrigues, DP, Ribeiro, RV, Alvez, RM, Hofer, E, 1993. Evaluation of virulence factors in
 environmental isolates of *Vibrio* species. Mem. Inst. Oswaldo Cruz, 88, 4, 589–592.
 <u>https://doi.org/10.1590/s0074-02761993000400016</u>
- Salminen, S, Isolauri, E, Salminen, E, 1996. Clinical uses of probiotics for stabilizing the gut
 mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek,
 70, 2-4, 347–58. <u>https://doi.org/10.1007/bf00395941</u>
- Shang Y. C, PS Leung, and Ling B.H. Comparative Economics of Shrimp Farming in Asia,
 Aquaculture, 1998; 164:183–200.
- Sharawy, ZZ, Ashour, M, Abbas, E, Ashry, O, Helal, M, Nazmi, H, Kelany, M, Kamel, A,
 Hassaan, M, Rossi Jr., W, El-Haroun, E, Goda, A, 2020. Effects of dietary marine
 microalgae, *Tetraselmis suecica*, on production, gene expression, protein markers and
 bacterial count of Pacific white shrimp *Litopenaeus vannamei*. Aquac. Res., 51, 2216–
 2228. <u>https://doi.org/10.1111/are.14566</u>
- Shen, WY, Fu, LL, Li, WF, Zhu, YR, 2010. Effect of dietary supplementation with *Bacillus subtilis* on the growth, performance, immune response and antioxidant activities of the
 shrimp (*Litopenaeus vannamei*). Aquac. Res., 41, 11, 1691–1698.
 https://doi.org/10.1111/j.1365-2109.2010.02554.x
- Silveira, DR, Milan, C, Rosa, JV, Timm, CD, 2016. Fatores de patogenicidade de *Vibrio* spp.
 de importância em doenças transmitidas por alimentos. Arq. Inst. Biol., 83, 1–7.
 https://doi.org/10.1590/1808-1657001252013
- Silva, JD, Queiroz, AC, 2002. Análise de alimentos: métodos químicos e biológicos. 3.ed.
 Viçosa, MG: UFV, p. 235.

- Stephens, A, Rojo, L, Araujo-Bernal, S, Garcia-Carreño, F, Muhlia-Almazan, A, 2012.
 Cathepsin B from the white shrimp *Litopenaeus vannamei*: cDNA sequence analysis,
 tissues-specific expression and biological activity. Comp. Biochem. Physiol. B:
 Biochem. Mol. Biol., 161, 32–40. <u>https://doi.org/10.1016/j.cbpb.2011.09.004</u>
- Sun, H, Song, Y, Zhang, H, Zhang, X, Liu, Y, Wang, X, Cong, P, Xu, J, Xue, C, 2020.
 Characterization of lipid composition in the muscle tissue of four shrimp species
 commonly consumed in China by UPLC-Triple TOF-MS/MS. LWT, 128, 109469.
 https://doi.org/10.1016/j.lwt.2020.109469
- 9 Teather, RM, Wood, PJ, 1982. Use of Congo red-polysaccharide interactions in enumeration
 10 and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ.
 11 Microbiol., 43, 4, 777–780. <u>https://doi.org/10.1128/aem.43.4.777-780.1982</u>
- 12 Tortora, JG, Funke, BR, Case, CL, 2012. Microbiologia. 10 ed. Porto Alegre, Artmed, p. 934.
- Tsai, CY, Chi, CC, Liu, CH, 2019. The growth and apparent digestibility of white shrimp,
 Litopenaeus vannamei, are increased with the probiotic, *Bacillus subtilis*. Aquac. Res.,
 50, 1475-1481. <u>https://doi.org/10.1111/are.14022</u>
- Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A, Speleman, F,
 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric
 averaging of multiple internal control genes. Genome Biol., 3, 7, research0034.
 https://doi.org/10.1186/gb-2002-3-7-research0034
- Vesterlund, S, Vankerckhoven, V, Saxelin, M, Goossens, H, Salminen, S, Ouwehand, AC,
 2007. Safety assessment of *Lactobacillus* strains: presence of putative risk factors in
 faecal, blood and probiotic isolates. Int. J. Food Microbiol., 116, 3, 325–331.
 https://doi.org/10.1016/j.ijfoodmicro.2007.02.002
- Vieira, BB, Pereira, EL, 2016. Potential probiotics for use in aquaculture. Revista da
 Universidade Vale do Rio Verde,14, 2, 1223–1241.
 http://periodicos.unincor.br/index.php/revistaunincor/article/viewFile/3765/pdf 654
- Wang Y, Al Farraj, DA, Vijayaraghavan, P, Hatamleh, AA, Biji, GD, Rady, AM, 2020. Host 27 associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger 28 29 shrimp Penaeus monodon. Saudi J. Biol. Sci., 27, 9, 2479-2484. https://doi.org/10.1016/j.sjbs.2020.07.010 30
- Wang, Y, Gu, Q, 2010. Effect of probiotics on white shrimp (*Penaeus vannamei*) growth
 performance and immune response. Mar. Biol. Res., 6, 3, 327–332.
 <u>http://dx.doi.org/10.1080/17451000903300893</u>

- Wen, R, Li, F, Li, S, Xiang, J, 2014. Function of shrimp STAT during WSSV infection. Fish
 Shellfish Immunol., 38, 2, 354–360. <u>https://doi.org/10.1016/j.fsi.2014.04.002</u>
- Williston, EH, Zia-Walrath, P, Youmans, GP, 1947. Plate methods for testing antibiotic
 activity of Actinomycetes against virulent human type tubercle Bacilli. J. Bacteriol.,
 54, 5, 563–568. https://doi.org/10.1128/jb.54.5.563-568.1947
- Yamazawa, R, Kuwana, R, Takeuchi, K, Takamatsu, H, Nakajima, Y, Ito, K, 2022.
 Identification of the active site and characterization of a novel sporulation-specific
 cysteine protease YabG from *Bacillus subtilis*. J. Biochem., 171, 3, 315–324.
 <u>https://doi.org/10.1093/jb/mvab135</u>
- Yu, MC, Li, ZJ, Lin, HZ, Wen, GL, Ma, S, 2009. Effects of dietary medicinal herbs and
 Bacillus on survival, growth, body composition, and digestive enzyme activity of the
 white shrimp *Litopenaeus vannamei*. Aquac. Int.,17, 4, 377–384.
 https://dx.doi.org/10.1007/s10499-008-9209-3
- Zokaeifar, H, Balcázar, JL, Kamarudin, MS, Sijam, K, Arshad, A, Saad, CR, 2012a. Selection
 and identification of non-pathogenic bacteria isolated from fermented pickles with
 antagonistic properties against two shrimp pathogens. J. Antibiot., 65, 6, 289–294.
 <u>https://dx.doi.org/10.1038%2Fja.2012.17</u>
- Zokaeifar, H, Balcázar, JL, Saad, CR, Kamarudin, MS, Sijam, K, Arshad, A, Nejat, N.
 2012b. Effects of *Bacillus subtilis* on the growth performance, digestive enzymes,
 immune gene expression and disease resistance of white shrimp, *Litopenaeus vannamei*. Fish Shellfish Immunol., 33, 683–689.
 https://doi.org/10.1016/j.fsi.2012.05.027
- Zuo, Z, Shang, B, Shao, Y, Li, W, Sun, J, 2019. Screening of intestinal probiotics and the
 effects of feeding probiotics on the growth, immune, digestive enzyme activity and
 intestinal flora of *Litopenaeus vannamei*. Fish Shellfish Immunol., 86, 160–168.
 <u>https://doi.org/10.1016/j.fsi.2018.11.003</u>
- 27
- 28
- 29
- 30
- 31
- 22
- 32
- 33

1	
2	CAPÍTULO II
3	
4	
5	Recombinant Bacillus subtilis expressing a fungal phytase as a probiotic additive
6	in the diet of Pacific white shrimp Litopenaeus vannamei
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	Manuscrito submetido ao periódico Aquaculture (FI = 5,135)
27	

Recombinant *Bacillus subtilis* expressing a fungal phytase as a probiotic additive in the diet of Pacific white shrimp *Litopenaeus vannamei*

4

5 Luiza Medeiros^a, Bruna Nornberg^a, Raíza Azevedo^a, Arthur Cardoso^a, Victor Torres Rosas^b,

6 Marcelo Borges Tesser^c, Virgínia F. Pedrosa^d, Luis A. Romano^d, Wilson Wasielesky Jr.^e, Luis

7 Fernando Marins^{a*}

8

⁹ ^aLaboratory of Molecular Biology, Institute of Biological Sciences, University of Rio Grande,

- 10 Rio Grande, RS, Brazil
- ¹¹ ^bQatar University, Environmental Science Center. P.O. Box: 2713, Doha Qatar.

12 ^cLaboratory of Nutrition of Aquatic Organisms, Institute of Oceanography, Federal University

13 of Rio Grande, Rio Grande, RS, Brazil

¹⁴ ^dLaboratory of Immunology and Pathology of Aquatic Organisms, Institute of Oceanography,

- 15 Federal University of Rio Grande, Rio Grande, RS, Brazil
- ¹⁶ ^eLaboratory of Shrimp Culture, Institute of Oceanography, Federal University of Rio Grande,
- 17 Rio Grande, RS, Brazil
- 18

19 *Corresponding author: Luis Fernando Marins, Laboratory of Molecular Biology, Institute of

- 20 Biological Sciences, University of Rio Grande, Av. Italia Km 8, CEP 96203-900, Rio Grande,
- 21 RS, Brazil. Email: <u>dqmluf@furg.br</u>
- 22
- 23
- 24
- ∠4

- 26
- 27

2 Abstract

Phosphorus is an essential mineral for all living beings and one of the most expensive 3 additives in the formulation of feed for aquaculture. This mineral is present in the vegetable 4 matter in the form of phytic acid (phytate), which is considered an antinutritional factor. 5 Phytate can form complexes with proteins, lipids and minerals, decreasing the digestibility of 6 7 these biomolecules. This compound can be degraded by phytases, which have been used in commercial feeds to mitigate the negative effects of phytate. However, these enzymes 8 9 undergo costly isolation and purification processes. In the present study, a genetically 10 modified Bacillus subtilis strain that expresses a fungal phytase was used as a feed additive. 11 The probiotic was added to the commercial feed of shrimp Litopenaeus vannamei and its effects on zootechnical performance, proximate composition of muscle, lipid concentration in 12 hepatopancreas and expression of genes related to digestion, amino acid metabolism and 13 antioxidant defenses were analyzed. Although the genetically modified probiotic had no 14 impact on growth parameters, there was a 39% increase in phosphorus content in muscle. In 15 16 addition, genes related to digestion were downregulated in shrimp hepatopancreas, as well as an increase in lipids in this tissue. These results demonstrates that the genetically modified 17 18 probiotic increased the efficiency of the use of plant-derived phosphorus, which may imply a 19 decrease in the addition of this element in the diets, as well as minimizing the impact of 20 shrimp farms on the eutrophication of adjacent ecosystems.

21

22 Keywords: Phosphorous, genetically modified probiotic, feed additive, shrimp farming.

23

24

2 Introduction

3 The growth of the aquaculture industry has generated a significant increase in the 4 demand for fish meal and oil, essential components in the production of animal feed. In 2018, around 12% of world fish production was used to produce these inputs and this growing 5 demand has generated price increases and greater pressure on fish stocks (FAO 2020). In a 6 7 scenario where extractive fishing is experiencing stagnant growth, alternative sources of protein need to be established to sustain the demand arising from the growth of aquaculture, 8 9 whether of animal or vegetable origin. In the case of vegetable proteins, there is an additional 10 challenge due to the presence of anti-nutritional compounds that prevent their use at higher 11 concentrations (Hardy 2010; Montoya-Camacho et al. 2019). Even so, vegetables such as 12 rapeseed, lupine and even fermented cotton have been used to replace fish meal in fish and 13 shrimp diets (Kaiser et al. 2021; Sun et al. 2016; Weiss et al. 2020).

14 Among the antinutritional compounds present in plant matter, phytic acid (or phytate) 15 is one of the most limiting and represents the largest form of phosphorus storage in plants (Dersjant-Li et al. 2015). Its antinutritional characteristic comes from the electronegativity of 16 17 phosphorus, which allows it to chelate and decrease the availability of minerals such as 18 calcium, magnesium, zinc, manganese, iron and copper (Hardy 2010; Bharadwaj et al. 2014; 19 Humer and Zebeli 2015). Phytate can also interact with proteins, carbohydrates and lipids, 20 forming complexes that reduce the digestibility of these biomolecules with a consequent decrease in nutrient absorption by the gastrointestinal tract (Kumar et al. 2012; Dersjant-Li et 21 al. 2015). The formation of these complexes also makes the phosphorus present in plant 22 matter unavailable to most monogastric animals, since these animals do not produce or 23 produce few enzymes capable of hydrolyzing phytate during the digestive process (Kumar et 24 al. 2012; Dersjant-Li et al. al. 2015). Thus, most of the plant phosphorus is excreted and ends 25 26 up eutrophicating the environment which, in the case of the aquatic environment, causes the 27 proliferation of microalgae with damaging effects to adjacent ecosystems (Kumar et al. 2012; 28 Hung et al. 2015).

Phytate removal or degradation increases the bioavailability of many cations, and consequently, improve the nutritional value of the feed. Phytase is a phytate-specific phosphatase that catalyzes the hydrolysis of phytic acid generating inositol and phosphates (Bhavsar and Khire 2014; Lemos and Tacon 2017). The objective of phytase supplementation in diets is to hydrolyze dietary phytate into absorbable phosphorus forms. This information has been well documented in several studies with fish and shrimp, showing that the use of
phytase in the diet improves growth, efficiency in absorption of nitrogen and phosphorus,
macronutrient digestibility, and amino acid bioavailability (Biswas et al. 2007; Green et al.
2021; Maas et al. 2021; Qiu and Davis 2017; Rachmawati and Samidjan 2016; Shahzad et al.
2021).

Among the commercially available phytases, those belonging to the class of histidine 6 7 acid phosphatases and produced by the filamentous fungus Aspergillus fumigatus are characterized for their high thermostability and activity over a wide pH range (Singh and 8 Satyanarayana 2015; Rebello et al. 2017). Additionally, bacterial phytases produced by 9 *Bacillus* species can be considered interesting alternatives to fungal phytases not only for their 10 11 thermostability, but also for their resistance to protease action and greater phytate specificity 12 (Kim et al. 1998; Oh et al. 2004). Cheng et al. (2012) expressed B. subtilis phytase C in 13 Escherichia coli and used the purified recombinant enzyme as an additive in L. vannamei feed. The addition of the recombinant enzyme to a diet high in soybean meal (40%) for 14 15 shrimp increased growth and feed efficiency. However, feed additives with commercial phytases have their cost significantly increased, as these enzymes need to go through costly 16 17 isolation and purification processes (Dudley et al. 2014).

18 An interesting alternative to reduce the cost of phytase additives in commercial feeds is to use genetic engineering techniques to transform a probiotic bacterium into a biofactory 19 20 of heterologous enzymes. In this scenario, the genetically modified probiotic can be added to the feed, and the secreted heterologous phytase can degrade the phytate present in plant 21 matter, increasing the digestibility of the feed. Recently, Santos et al. (2020) evaluated the 22 effect of adding a genetically modified strain of B. subtilis capable of secreting a fungal 23 phytase in zebrafish (Danio rerio) feed. The authors used a feed rich in soybean meal and 24 observed that the addition of the genetically modified probiotic improved the fish condition 25 26 factor, as well as stimulating the immune system, decreasing inflammatory responses and 27 oxidative stress in gastrointestinal tract. In the present study, the genetically modified strain of B. subtilis developed by Santos et al. (2020) was used as an additive in the feed of shrimp L. 28 vannamei, evaluating the zootechnical performance, proximate composition of muscle, lipid 29 vacuoles counting in hepatopancreas, and expression of genes related to digestion, amino acid 30 metabolism and antioxidant defenses. 31

32

33 Material and methods

2 Preparation of feed supplemented with probiotic bacteria

3 The strains of *B. subtilis* used in this study are the same ones used by Santos et al. (2020). The KMO strain of B. subtilis was used as a control, which is derived from the B. 4 subtilis 168 strain and had its genome modified to generate a super-competent strain for 5 genetic manipulation (Rahmer et al. 2015). The KM0-Phy strain was manipulated by Santos 6 7 et al. (2020) to express and secrete A. fumigatus phytase. Inoculums of the probiotic strains were first cultivated for 16 h at 37 °C in volumes of 3 mL in minimal salts medium 8 (Anagnostopoulos and Spizizen 1960), in a shaker incubator at 250 rpm. The next day, the 9 cultures were added to erlenmayers (125 ml) containing 50 ml of the culture medium 10 11 suggested by Riet et al. (2021), which consists of a minimal salts medium with glucose and 12 casein hydrolyzate. The cultures followed the same protocol used for culture of inocula, but 13 the concentration of bacteria was monitored in a spectrophotometer until reaching the stationary phase ($OD_{600} = 1.6$). According to Santos et al. (2020), the genetic construct used 14 15 to express fungal phytase has maximum yield in the stationary phase of bacterial growth. Then, cultures were centrifuged at 5,000 \times g for 10 min at 4 °C. After centrifugation, the 16 17 supernatant was discarded and 2 mL of saline solution (0.9%) NaCl was added to wash the pellet, and this process was repeated twice (adapted from Zokaeifar et al. 2012). Then, the 18 pellet was diluted in saline solution so that each gram of feed received 10¹⁰ colony-forming 19 units (CFU) of the probiotic strains (Riet et al. 2021). The commercial feed used (Guabi. 20 Brazil) is free of probiotics and contains 35 % crude protein, 9 % lipids, 15 % ash and 1.5 % 21 22 total phosphorous.

23

24 Experimental design

Juveniles of L. vannamei with an average weight of 0.6 ± 0.1 g were purchased from 25 Aquatec (Rio Grande do Norte, Brazil) and the experiment was carried out at the Marine 26 Aquaculture Station of the Federal University of Rio Grande (FURG, Brazil). Shrimps were 27 28 acclimated for a week in 150 L tanks with clear water. Throughout the experiment, salinity was maintained at 30 g/L, temperature at 29 °C, and oxygenation close to saturation (6 ± 0.5 29 mg/L). Every day, 30% of the water was changed in order to keep ammonia, nitrites and 30 nitrates within tolerance levels for the species. Three treatments, with four replications each, 31 were used, in a total of 12 tanks. Each tank received 40 shrimps, totaling 480 individuals 32 (density of 266 shrimp/m³). In the control treatment (CON), the shrimps received only 33

commercial feed moistened with saline solution (NaCl 0.9%). In the second treatment (KM0),
the shrimps received commercial feed added with *B. subtilis* KM0. In the third treatment (KM0-Phy), the shrimps received commercial feed supplemented with genetically modified *B. subtilis* expressing fungal phytase. The diets were administered twice a day (early in the morning and early in the afternoon) for 45 days, at a rate of 10% of estimated biomass at the beginning and reduced to 5% at the end of the experiment.

7

8 *Tissue collection*

9 The experimental period lasted 45 days. At the end of this period, shrimps from each 10 treatment were randomly separated for analysis of proximate composition of muscle tissue 11 (five individuals per treatment, immediately frozen at -20 °C) and gene expression (seven 12 individuals per treatment). For gene expression analysis, hepatopancreas and muscle tissue 13 were individually dissected and placed in 500 μ L of Trizol Reagent (Invitrogen, Brazil), 14 according to the manufacturer's protocol. Whole shrimps were also separated for histological 15 analysis.

16

17 Zootechnical performance

18 To calculate weight gain, biomass gain, feed conversion ratio and survival, the 19 following formulas were used:

- Weight gain (g) = Pf - Pi, where Pf = final weight and Pi = initial weight;

Biomass gain = (Average Pf x number of individuals at the end) - (Average Pi x initial
number of individuals);

- Feed conversion rate = feed consumption / biomass gain;

- Survival (%) = (final shrimp population \times 100) / initial population.

25

26 *Proximate composition*

Proximate composition analysis was performed from shrimp muscle (n = 5). To assess tissue moisture, the samples were dried in an oven at 100 °C until constant weight. Protein levels were obtained using the Kjeldahl method and the total ether extract using the Soxhlet method, following the instructions of AOAC (2000). Ashes were quantified by muffle incineration for 6 h at 600 °C. To determine the phosphorus content, the method proposed by Silva and Queiroz (2002) was used, expressed in mg/100 g of fresh sample.

1 Gene expression analyses

Gene expression analyses were performed using quantitative PCR (qPCR), according 2 to Livak and Schmittgen (2001). First, total RNA was extracted from tissues using Trizol 3 reagent (Invitrogen, Brazil), as per manufacturer's instructions. The RNA obtained was treated 4 with DNAse I, quantified spectrophotometrically, and the RNA quality was verified in 1% 5 agarose gel electrophoresis. RNA was reverse transcribed into complementary DNA (cDNA) 6 7 using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Brazil), as per the manufacturer's instructions. For each tissue a different set of genes was analyzed. In the 8 9 hepatopancreas, genes related to digestion (amylase, *amy*; lipase, *lip*; trypsin, *tryp*; cathepsin B, cathB; chymotrypsin, chymo) and amino acid metabolism (glutamine synthetase, gs; 10 glutamate dehydrogenase, gdh) were analyzed. In muscle, two genes related to the antioxidant 11 defense system (glutathione peroxidase, gpx; superoxide dismutase, sod) were analyzed. The 12 13 primers used in the qPCR reactions are shown in Table 1. Previously, all primers had their efficiencies calculated from serial dilutions. For all analyses, a 1:10 cDNA dilution was used. 14 15 All reactions were performed on the 7300 Real-time PCR System platform (Applied Biosystems, Brazil), with the PowerUP SYBR Green Master Mix kit (Applied Biosystems, 16 17 Brazil). Reactions were performed with the following schedule: 50 °C for 2 min, 95 °C for 2 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 15 s. The reference gene efla was 18 19 used to normalize results of gene expression data in all tissues analyzed. In addition, 60S-121 and rps3A genes were used to normalize expression data in hepatopancreas and muscle, 20 respectively. To determine the stability of the reference genes, the geNorm VBA applet 21 software for Microsoft Excel (Vandesompele et al. 2002) was used. 22

	24	Table 1.	Genes and	primer	sequences	used in	qPCR reactions.
--	----	----------	-----------	--------	-----------	---------	-----------------

Gene	Sense (5'-3')	Antisense (5'-3')	Amplicon (nt)	GenBank
amy	ctctggtagtgctgttggct	tgtcttacgtgggactggaag	116	AJ133526
lip	actgtctcctctgctcgtc	atggtttctggaataggtgttt	131	XM027365317
tryp	cggagagctgccttaccag	tcggggttgttcatgtcctc	141	X86369
chymo	ggctctcttcatcgacg	cgtgagtgaagaagtcgg	182	XM037943862
cathB	ggatgtaacggaggcttc	ctgtatgctttgcctcca	248	XM027359505
gdh	aggttgtggaggaccagttg	ccgtggatcatctcgtaggt	166	EU496492
gs	ttccgtctcctgaaataccg	aggagccttgggaatgaagt	193	JN620540
gpx	agggacttccaccagatg	caacaactccccttcggta	117	AY973252

sod	tggagtgaaaggctctggct	acggaggttcttgtactgaaggt	175	DQ005531
rps3A	ggcttgctatggtgtgctcc	tcatgctcttggctcgctg	101	XM027376915
60S-121	gttgacttgaagggcaatg	cttcttggcttcgattctg	246	XM027359925
efla	ccaccctggccagattca	gcgaacttgcaggcaatg	75	DQ858921

2 Histological analysis

3 Whole shrimps were prepared for histological analysis by injection into tissues and complete submersion in Davidson's solution (11.5% acetic acid, 22% formalin, 33% ethanol) 4 for 48 hours. Afterwards, the shrimp were removed from the fixative solution and had the 5 6 hepatopancreas dissected. The tissue obtained was first placed in 70% ethanol and subjected to successive dehydration in increasing concentrations of ethanol. After this process, the 7 8 hepatopancreas was clarified in xylene, embedded in Paraplast at 60 °C and sectioned into 3 9 um thick slices. After staining with Hematoxylin and Eosin (Bell and Lightner, 1988), lipid 10 storage cells were counted under a compound microscope at 40x magnification. Lipid vacuoles were counted from 10 random visual fields from each hepatopancreas sample. 11 12 Samples from four individuals from each treatment were analyzed.

13

14 Statistical analysis

To test for possible differences among treatments, one-way analysis of variance (ANOVA) was used. Normality and heterogeneity were assessed using the Shapiro-Wilk and Levene tests, respectively. For each case, when significance was detected among treatments, a subsequent comparison of means was performed using the Tukey test. All numerical data from gene expression were expressed as mean \pm standard error. The other data were expressed as mean \pm standard deviation. Differences were considered statistically significant when p < 0.05.

22

23 **Results**

24

25 Zootechnical performance

No significant differences were observed between treatments for any of the analyzed
parameters. The results are shown in Table 2.

	Treatments			
	CON	KM0	KM0-Phy	
Initial weight (g)	0.61 ± 0.06	0.62 ± 0.05	0.66 ± 0.06	
Final weight (g)	5.44 ± 0.49	5.09 ± 0.45	5.63 ± 0.43	
Weight gain (g)	4.84 ± 0.49	4.47 ± 0.42	4.98 ± 0.43	
Feed conversion ratio	1.36 ± 0.13	1.46 ± 0.15	1.31 ± 0.11	
Survival (%)	100	100	100	

Table 2. Zootechnical performance of *L. vannamei* fed on commercial feed (CON),
 commercial feed supplemented with KM0 or KM0-Phy strains of *B. subtilis*.

3

4

5 *Proximate composition of muscle tissue*

6 Among the parameters analyzed for proximate composition of *L. vannamei* muscle, 7 there was a significant decrease in the percentage of ash of shrimp that received commercial 8 feed supplemented with probiotic strains (KM0 or KM0-Phy). Also, the phosphorus retention 9 in shrimp muscle was higher in KM0-Phy than the control treatment (CON). No changes were 10 detected in the other analyzed parameters. The results are shown in Table 3.

11

12 **Table 3**. Proximate composition (%) of *L. vannamei* muscle fed commercial feed (CON),

13	commercial feed	d supplemented wit	h KM0 or KM0-Phy	v strains of <i>B. subtilis</i> .
----	-----------------	--------------------	------------------	-----------------------------------

	Treatments		
	CON	KM0	KM0-Phy
Moisture (%)	74.56 ± 0.63	73.97 ± 0.22	73.91 ± 0.81
Ash (%)	1.63 ± 0.27^{a}	1.53 ± 0.23^{b}	1.45 ± 0.27^{b}

Protein (%)	18.97 ± 1.74	19.26 ± 0.44	19.28 ± 0.08
Lipid (%)	0.75 ± 0.65	0.47 ± 0.43	0.68 ± 0.55
Phosphorus (mg/100 mg)	79.24 ± 9.03^a	$98.92 \pm 1.41^{a,b}$	110.02 ± 14.13^{b}

1 Different letters represent statistically significant differences (p < 0.05).

2

3 Expression of genes related to digestion

Of five genes analyzed related to digestion (Figure 1), only *cathB* and *amy* were not significantly altered in shrimp fed with feed supplemented with both KM0 and KM0-Phy strains. The other genes (*chymo*, *tryp* and *lip*) were significatively downregulated by both probiotic treatments, when compared to control group.

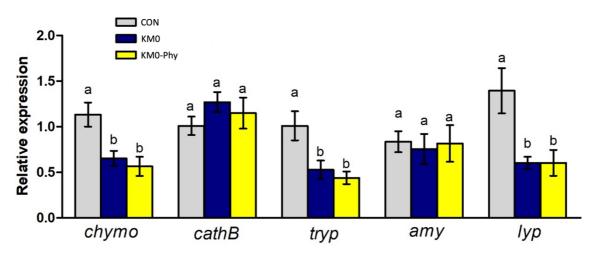


Figure 1. Expression of genes related to digestion in *L. vannamei* hepatopancreas fed with feed supplemented with different strains of *B. subtilis*. CON: shrimp fed only commercial feed; KM0: shrimp fed commercial feed with *B. subtilis* KM0; KM0-Phy: shrimp fed commercial feed with *B. subtilis* KM0-Phy. Different letters represent statistically significant differences (p < 0.05).

15

9

16 Expression of genes related to amino acid metabolism

17 Regarding genes related to amino acid metabolism (*gdh* and *gs*); Figure 2, only *gdh*18 was downregulated in shrimp fed with feed supplemented with KM0 strain. The *gs* gene was
19 not altered in any treatment.

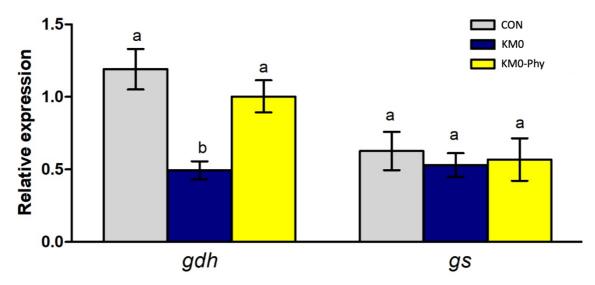
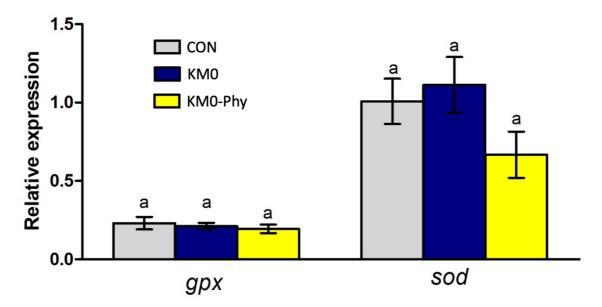



Figure 2. Expression of genes related to amino acid metabolism in *L. vannamei* hepatopancreas fed with feed supplemented with different strains of *B. subtilis*. CON: shrimp fed only commercial feed; KM0: shrimp fed commercial feed with *B. subtilis* KM0; KM0-Phy: shrimp fed commercial feed with *B. subtilis* KM0-Phy. Different letters represent statistically significant differences (p < 0.05).

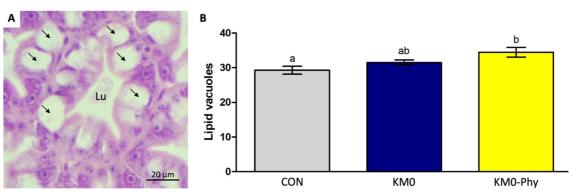
1

8 Expression of genes related to antioxidant defense system

9 Genes related to antioxidant defense system (*gpx* and *sod*; Figure 3) were not altered 10 in any treatment.

12

Figure 3. Expression of genes related to the antioxidant defense system in *L. vannamei*muscle fed with feed supplemented with different strains of *B. subtilis*. CON: shrimp fed only


commercial feed; KM0: shrimp fed commercial feed with *B. subtilis* KM0; KM0-Phy: shrimp
 fed commercial feed with *B. subtilis* KM0-Phy. Different letters represent statistically
 significant differences (p < 0.05).

4 5

Histological analysis

Figure 4 shows the result of lipid vacuoles counts in shrimp hepatopancreas. Shrimp fed with diet supplemented with *B. subtilis* KM0-Phy had a higher number of lipid vacuoles (34.47 ± 1.39) compared to the control treatment (29.28 ± 1.13) . The counting of lipid vacuoles from shrimp feed with diet supplemented with *B. subtilis* KM0 (31.55 ± 0.74) was not statistically different from the other two treatments.

12

Figure 4. Count of lipid vacuoles in the hepatopancreas of *Litopenaeus vannamei* from histological analysis. A) Histological section showing the structures observed in shrimp hepatopancreas (40x magnification). Lu: lumen of the hepatopancreatic tubules; arrows indicate some examples of lipid vacuoles; B) Graph showing the result of the lipid vacuoles count. CON: shrimp fed only commercial feed; KM0: shrimp fed commercial feed with *B*. *subtilis* KM0; KM0-Phy: shrimp fed commercial feed with *B. subtilis* KM0-Phy. Different letters represent statistically significant differences (p < 0.05).

20

21 Discussion

Phosphorus is a key element in the constitution of fundamental molecules for living beings, such as nucleic acids and phospholipids in cell membranes. Furthermore, it is involved in production of energy molecules such as adenosine triphosphate (ATP), which are essential for the entire cell metabolism. Taking these characteristics into account, phosphorus is a limiting mineral for the growth of all living beings. However, each organism has specific requirements regarding phosphorus levels. While phosphorus deficiency can cause serious metabolic problems related to growth, its excess can be excreted and eutrophicate the adjacent water bodies with negative consequences from an environmental point of view. It is known that only approximately 40 % of the phosphorus available in feed is absorbed by farmed aquatic organisms, while the surplus is secreted and released into the water (Sugiura 2018). Thus, the rational use of phosphorus is a balance point between animal production and environmental protection.

7 Due to the low concentration of phosphorus in natural waters, aquatic organisms need to obtain this essential element from food (Coloso et al. 2001). In the case of cultivated 8 9 aquatic organisms, phosphorus must be present in the feed in its bioavailable form. However, this mineral is among the most expensive feed supplements used in aquaculture (Fox et al. 10 11 2006), and the phosphorus present in plant matter is not bioavailable to monogastric animals 12 because it is in the form of phytate, which is considered an antinutritional factor. The addition 13 of phytases can alleviate the problem, as these enzymes degrade phytate and release inorganic phosphorus for assimilation by the body. However, the addition of phytase to the feed 14 15 represents a significant addition to its final cost. In the present study, the hypothesis that the addition of a probiotic strain of *B. subtilis* capable of secreting a fungal phytase (KM0-Phy) in 16 17 L. vannamei feed could degrade the phytate present in plant matter and increase the bioavailability of phosphorus for the shrimp. Additionally, the impact of KM0-Phy strain on 18 growth, survival, proximate muscle composition, lipid vacuoles in hepatopancreas and 19 expression of genes related to digestion, amino acid metabolism and antioxidant defenses 20 21 were evaluated.

After 45 days of experimentation, it was observed that the addition of the strain KMO-22 Phy to the shrimp diet did not change any parameters of growth or survival. The lack of 23 growth induction observed here can be explained by the fact that probiotics may have a 24 greater impact on the early stages of shrimp development, as suggested by Toledo et al. 25 (2019). On the other hand, chemical composition analysis showed a significant increase of 26 39% in phosphorus content of muscle tissue of shrimp that had the probiotic KM0-Phy added 27 to the feed, even if the feed used is already supplemented with 1.5% phosphorus. 28 29 Interestingly, shrimp fed diet with KM0 strain also had an increase in muscle phosphorus at an intermediate level between CON and KM0-Phy groups. It is known that Bacillus species 30 can produce Ca²⁺-dependent beta-propeller type phytases, which have high thermal stability, 31 optimal catalytic activity at neutral pH and high specificity for the calcium-phytate complex 32 (Fu et al. 2008). Thus, it would be expected that the presence of *B. subtilis* in the feed could 33

have some effect on the bioavailability of phosphorus for shrimp. However, genetic
 manipulation for expression and secretion of a fungal phytase performed in KM0-Phy strain
 significantly enhanced this characteristic.

The increase observed in the phosphorus concentration in muscle tissue of shrimp fed 4 diet with B. subtilis KM0-Phy additive suggests that the phytate was degraded by fungal 5 phytase secreted by the genetically modified probiotic. Thus, it is reasonable to expect that the 6 7 decrease in phytate could make more nutrients available and modulate expression of genes related to digestion in shrimp hepatopancreas. Quantification of digestion-related gene 8 9 expression demonstrated a significant downregulation of proteases (chymo and tryp) and 10 lipase (lip) transcription in both KM0 and KM0-Phy treatments. It is known that Bacillus 11 species are capable of producing and secreting proteases and lipases. Priest (1977) already described numerous digestive exoenzymes produced by Bacillus species, especially 12 13 carbohydrates, proteases and lipases. Some *Bacillus* proteases stand out for their high stability under adverse environmental conditions such as temperature and pH extremes, presence of 14 15 organic solvents, detergents, and oxidizing agents (Contesini et al. 2018). Also, according to Eggert et al. (2003), *B. subtilis* can produce and secrete two types of lipases (lipA and lipB) 16 17 from genes that are differentially expressed according to growth conditions. In addition, the 18 counting of lipid vacuoles in the hepatopancreas showed that B. subtilis KM0-Phy used in the 19 present study increased the concentration of lipids in that tissue in comparison to control 20 group. The addition of phytases to the fish diet has been linked to an increase in lipids in the body (reviewed by Zheng et al. 2020). However, this relationship has not, to our knowledge, 21 been established in crustaceans. Thus, the presence of a probiotic bacterium in the intestine 22 capable of producing and secreting digestive enzymes decreases the need for the host to 23 produce and secrete its own enzymes. This directly reflects on the regulation of genes as a 24 way of saving the energy that is invested in the processes of absorption of nutrients from 25 26 food. In fact, it has often been reported that dietary probiotic supplementation increases the 27 activity of digestive enzymes in shrimp intestine. Recently, Wang et al. (2020) showed that 28 probiotics such as *B. subtilis* and *B. licheniformis* can induce the activity of digestive enzymes 29 in the gastrointestinal tract of tiger shrimp *Penaeus monodon*. Also, Zokaeifar et al. (2012) showed that the addition of B. subtilis strains to L. vannamei feed significantly increased 30 digestive enzyme activity in shrimp. These studies, which only analyze the activity of 31 digestive enzymes in the gastrointestinal tract, cannot differentiate between the action of 32 shrimp enzymes and those secreted by probiotics. 33

1 In the present study, genes related to amino acid metabolism (gdh and gs) were also 2 analyzed. The only difference observed was a downregulation of gdh in the group of shrimps treated with the KM0 strain. Apparently, genetic manipulation in the KM0 strain to express a 3 fungal phytase increased the transcription of gdh to the same levels observed for the control 4 group. The gdh gene encodes the enzyme glutamate dehydrogenase, which catalyzes the 5 oxidative deamination of glutamate to form α -ketoglutarate in the mitochondrial matrix. This 6 7 chemical reaction results in the production of a Krebs cycle intermediary and can accelerate ATP production by oxidative phosphorylation in the electron transport chain (Dawson and 8 9 Storey, 2012). It is possible that the greater availability of phosphorus in the shrimp treated with the KM0-Phy strain is favoring a higher glutamate dehydrogenase expression compared 10 11 to the shrimp treated with the KM0 strain. In the case of genes related to oxidative stress (gpx 12 and *sod*) analyzed in muscle tissue, no difference was observed among treatments. This result 13 shows that the increase in phosphorus availability did not imply a change in the shrimp muscle's oxidative status. 14

15 In conclusion, the use of a genetically modified strain of *B. subtilis* expressing a fungal phytase was able to increase the availability of phosphorus for shrimp. Although the increased 16 17 availability of this mineral was not reflected in growth, it was possible to observe a 18 downregulation in expression of genes related to digestion. Also, it is possible that the action 19 of the phytase produced by the probiotic enables a decrease in phosphorus additives in the feed, with an impact on its cost. In addition, the greater efficiency in the use of phosphorus 20 present in the feed will certainly imply a decrease in the excretion of this element by shrimp, 21 22 with a consequent reduction in the impact of shrimp farms on adjacent ecosystems.

23

24 Acknowledgements

We thank all team members of the Laboratory of Molecular Biology (Institute of 25 26 Biological Sciences, Federal University of Rio Grande - FURG, Brazil) and all team members of the Shrimp Project (Marine Aquaculture Station, Federal University of Rio Grande -27 FURG, Brazil) who helped during all stages of the experiment. This study was funded by 28 29 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 434259/2018-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 30 (CAPES, Financial Code 001). L. F. Marins, M. B. Tesser, L. A. Romano and W. Wasielesky 31 are research fellows CNPq (Proc. No. 309634/2018-0, 304474/2020-7, 301245/2016-9 and 32 310652/2017-0, respectively). 33

1				
2	Conflict of interest			
3	The authors declare no conflict of interests.			
4				
5	References			
6				
7	Anagnostopoulos, C., Spizizen, J., 1960. Requirements for transformation in Bacillus subtilis.			
8	J. Bacteriol. 81, 741–746. https://doi.org/10.1128/JB.81.5.741-746.1961			
9	AOAC, 2000. Official Methods of Analysis, 17th ed. AOAC (CDROM), Washington, DC.			
10	Bell, T.A., Lightner, D.V., 1988. A handbook of normal penaeid shrimp histology. World			
11	Aquaculture Society, Baton Rouge, LA.			
12	Bharadwaj, A.S., Patnaik, S., Browdy, C.L., Lawrence, A.L., 2014. Comparative evaluation			
13	of an inorganic and a commercial chelated copper source in Pacific white shrimp			
14	Litopenaeus vannamei (Boone) fed diets containing phytic acid. Aquaculture 422-423,			
15	63-68. https://doi.org/10.1016/j.aquaculture.2013.11.025			
16	Bhavsar, K., Khire, J.M., 2014. Current research and future perspectives of phytase			
17	bioprocessing. RSC Advances 4, 26677–26691. https://doi.org/10.1039/c4ra03445g			
18	Biswas, P., Pal, A.K., Sahu, N.P., Reddy, A.K., Prusty, A.K., Misra, S., 2007. Lysine and/or			
19	phytase supplementation in the diet of Penaeus monodon (Fabricius) juveniles: Effect			
20	on growth, body composition and lipid profile. Aquaculture 265, 253-260.			
21	https://doi.org/10.1016/j.aquaculture.2006.10.037			
22	Cheng, W., Chiu, C.S., Guu, Y.K., Tsai, S.T., Liu, C.H., 2012. Expression of recombinant			
23	phytase of Bacillus subtilis E20 in Escherichia coli HMS 174 and improving the			
24	growth performance of white shrimp, Litopenaeus vannamei, juveniles by using			
25	phytase-pretreated soybean meal-containing diet. Aquac. Nutr. 19, 117-127.			
26	https://doi.org/10.1111/j.1365-2095.2012.00946.x			
27	Coloso, R.M., Basantes, S.P., King, K., Hendrix, M.A., Fletcher, J.W., Weis, P., Ferraris,			
28	R.P., 2001. Effect of dietary phosphorus and vitamin D on 3 phosphorus levels in			
29	effluent from the experimental culture of rainbow trout Oncorhynchus mykiss.			
30	Aquaculture 202, 145–161. https://doi.org/10.1016/S0044-8486(01)00572-5			
31	Contesini, F.J., Melo, R.R., Sato H.H., 2018. An overview of Bacillus proteases: from			
32	production to application. Crit. Rev. Biotechnol. 38, 3, 321-334.			
33	https://doi.org/10.1080/07388551.2017.1354354			

- Dawson, N.J., Storey, K.B., 2012. An enzymatic bridge between carbohydrate and amino acid
 metabolism: Regulation of glutamate dehydrogenase by reversible phosphorylation in
 a severe hypoxia-tolerant crayfish. J. Comp. Physiol. B: Biochem. Syst. and Environ.
 Physiol. 182, 3, 331–340. <u>https://doi.org/10.1007/s00360-011-0629-4</u>
- Dersjant-Li, Y., Awati, A., Schulze, H., Partridge, G., 2015. Phytase in non-ruminant animal
 nutrition: A critical review on phytase activities in the gastrointestinal tract and
 influencing factors. J. Sci. Food Agric. 95, 878–896. <u>https://doi.org/10.1002/jsfa.6998</u>
- Biomanufacturing beyond the cell. Biotechnol. J. 10, 69–82.
 https://doi.org/10.1002/biot.201400330
- Eggert, T., Brockmeier, U., Dröge, M.J., Quax, W.J., Jaeger, K.E., 2003. Extracellular lipases
 from *Bacillus subtilis*: regulation of gene expression and enzyme activity by amino
 acid supply and external pH. FEMS Microbiol. Lett. 225, 2, 319–
 324. <u>https://doi.org/10.1016/S0378-1097(03)00536-6</u>
- FAO, 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action.
 Rome. <u>https://doi.org/10.4060/ca9229en.</u>
- Fox, J.M., Davis, D.D., Wilson, M., Lawrence, A.L., 2006. Current status of amino acid
 requirement research with marine penaeid shrimp. In: Cruz Suárez LE, Ricque Marie
 D, Tapia Salazar M, Nieto López MG, Villarreal Cavazos DA, Puello Cruz AC,
 García Ortega A eds.
- Fu, S., Sun, J., Qian, L., Li, Z., 2008. *Bacillus* phytases: present scenario and future
 perspectives. Appl. Biochem. Biotechnol. 151, 1–8. <u>https://doi.org/10.1007/s12010-</u>
 <u>008-8158-7</u>
- Green, B.W., Rawles, S.D., Schrader, K.K., McEntire, M.E., Abernathy, J., Ray, C.L.,
 Gaylord, T.G., Lange, M.D., Webster, C.D., 2021. Impact of dietary phytase on tilapia
 performance and biofloc water quality. Aquaculture 541, 736845
 https://doi.org/10.1016/j.aquaculture.2021.736845
- Hardy, R.W., 2010. Utilization of plant proteins in fish diets: Effects of global demand and
 supplies of fishmeal. Aquac. Res. 41, 770-776. <u>https://doi.org/10.1111/j.1365-</u>
 <u>2109.2009.02349.x</u>
- Humer, E., Zebeli, Q., 2015. Phytate in feed ingredients and potentials for improving the
 utilization of phosphorus in ruminant nutrition. Anim. Feed Sci. Technol. 209, 1–15.
 <u>https://doi.org/10.1016/j.anifeedsci.2015.07.028</u>

1	Hung, L.T., Thanh, N.T., Pham, M.A., Browdy, C.L., 2015. A comparison of the effect of
2	dietary fungal phytase and dicalcium phosphate supplementation on growth
3	performances, feed and phosphorus utilization of tra catfish juveniles (Pangasianodon
4	hypophthalmus Sauvage, 1878). Aquac. Nutr. 21, 10–17.
5	https://doi.org/10.1111/anu.12134
6	Kaiser, F., Harloff, H., Tressel, R., Kock, T., Schulz, C., 2021. Effects of highly purified
7	rapeseed protein isolate as fishmeal alternative on nutrient digestibility and growth
8	performance in diets fed to rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 27(5),
9	1352–1362. https://doi.org/10.1111/anu.13273
10	Kim, Y-O., Kim, H-K., Bae, K-S., Yu, J-H., Oh, T-K., 1998. Purification and properties of a
11	thermostable phytase from Bacillus sp. DSII. Enzyme Microb. Technol. 22(1), 2-7.
12	https://doi.org/10.1016/S0141-0229(97)00096-3

- Kumar, V., Sinha, A.K., Makkar, H.P.S., de Boeck, G., Becker, K., 2012. Phytate and phytase
 in fish nutrition. J. Anim. Physiol. Anim. Nutr. 96, 335–364.
 https://doi.org/10.1111/j.1439-0396.2011.01169.x
- Lemos, D., Tacon, A.G.J., 2017. Use of phytases in fish and shrimp feeds: a review. Rev.
 Aquac. 9, 266–282. <u>https://doi.org/10.1111/raq.12138</u>
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time
 quantitative PCR and the double delta CT method. Methods 25, 4, 402–408.
 <u>https://doi.org/10.1006/meth.2001.1262</u>
- Maas, R.M., Verdegem, M.C.J., Debnath, S., Marchal, L., Schrama, J.W., 2021. Effect of
 enzymes (phytase and xylanase), probiotics (*B. amyloliquefaciens*) and their
 combination on growth performance and nutrient utilisation in Nile tilapia.
 Aquaculture 533, 736226. <u>https://doi.org/10.1016/j.aquaculture.2020.736226</u>
- Montoya-Camacho, N., Marquez-Ríos, E., Castillo-Yáñez, F.J., Cárdenas López, J.L., LópezElías, J.A., Ruíz-Cruz, S., Jiménez-Ruíz, E.I., Rivas-Vega, M.E., Ocaño-Higuera,
 V.M., 2019. Advances in the use of alternative protein sources for tilapia feeding. Rev.
 Aquac. 11, 515–526. https://doi.org/10.1111/raq.12243
- Oh, B.C., Choi, W.C., Park, S., Kim, Y.O., Oh, T.K., 2004. Biochemical properties and
 substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol.
 Biotechnol. 63, 362–372. https://doi.org/10.1007/s00253-003-1345-0
- Priest, F.G., 1977. Extracellular enzyme synthesis in the genus *Bacillus*. Bacteriol. Rev.
 41(3), 711–753. <u>https://doi:10.1128/br.41.3.711-753.1977</u>

- Qiu, X., Davi,s D.A., 2017. Effects of dietary phytase supplementation on growth
 performance and apparent digestibility coefficients of Pacific white shrimp
 Litopenaeus vannamei. Aquac. Nutr. 23, 942–951. <u>https://doi.org/10.1111/anu.12462</u>
- Rachmawati, D., Samidjan, I., 2016. Effect of phytase enzyme on growth boost in the
 artificial feed made of plant protein to shorten production time of giant tiger prawn
 [*Penaeus monodon*, (Fabricus 1798)]. Aquatic. Procedia 7, 46–53.
 https://doi.org/10.1016/j.aqpro.2016.07.006
- Rahmer, R., Heravi, K.M., Altenbuchner, J., 2015. Construction of a super-competent *Bacillus subtilis* 168 using the PmtlA-comKS inducible cassette. Front. Microbiol. 6,
 10 1431. <u>https://doi.org/10.3389/fmicb.2015.01431</u>
- Rebello, S., Jose, L., Sindhu, R., Aneesh, E.M., 2017. Molecular advancements in the
 development of thermostable phytases. Appl. Microbiol. Biotechnol. 101, 2677–2689.
 <u>https://doi.org/10.1007/s00253-017-8195-7</u>
- Riet, J., Costa-Filho, J., Dall'Agno, L., Medeiros, L., Azevedo, R., Nogueira, L.F., Maggioni, 14 15 R., Pedrosa, V.F., Romano, L.A., Altenbuchner, J., Wasielesky Jr, W., Marins, L.F., 2021. Bacillus subtilis expressing double-strand RNAs (dsRNAs) induces RNA 16 17 interference mechanism (RNAi) and increases survival of WSSV-challenged 18 Litopenaeus vannamei. Aquaculture 541, 736834. 19 https://doi.org/10.1016/J.AQUACULTURE.2021.736834
- Santos, K.O., Costa-Filho, J., Spagnol, K.L., Nornberg, B.F., Lopes, F.M., Tesser, M.B.,
 Marins, L.F., 2020. The inclusion of a transgenic probiotic expressing recombinant
 phytase in a diet with a high content of vegetable matter markedly improves growth
 performance and the expression of growth-related genes and other selected genes in
 zebrafish. Aquaculture 519, 734878.
 https://doi.org/10.1016/j.aquaculture.2019.734878
- Shahzad, M.M., Bashir, S., Hussain, S.M., Javid, A., Hussain, M., Ahmed, N., Khan, M.K.A.,
 Furqan, M., Liaqat, I., Rafique, T., Khalid, F., 2021. Effectiveness of phytase pretreatment on growth performance, nutrient digestibility and mineral status of common
 carp (*Cyprinus carpio*) juveniles fed Moringa by-product based diet. Saudi J. Biol. Sci.
 28, 1944–1953. <u>https://doi.org/10.1016/j.sjbs.2020.12.046</u>
- Silva, J.D., Queiroz, A.C., 2002. Análise de alimentos: métodos químicos e biológicos, 3ª ed.
 MG: UFV, Viçosa, pp 235.

1	Singh, B., Satyanarayana, T., 2015. Fungal phytases: Characteristics and amelioration of					
2	nutritional quality and growth of non-ruminants. J. Anim. Physiol. Anim. Nutr. 99,					
3	646-660. https://doi.org/10.1111/jpn.12236					
4	Sugiura, S.H., 2018. Phosphorus, aquaculture, and the environment. Rev. Fish. Sci. Aquac.					
5	26, 515-521. https://doi.org/10.1080/23308249.2018.1471040.					
6	Sun, H., Tang, J.W., Yao, X.H., Wu, Y.F., Wang, X., Liu, Y., 2016. Effects of replacement of					
7	fish meal with fermented cottonseed meal on growth performance, body composition					
8	and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone,					
9	1931. Aquac. Res. 47, 2623–2632. https://doi.org/10.1111/are.12711					
10	Toledo, A., Frizzo, L., Signorini, M., Bossier, P., Arenal, A., 2019. Impact of probiotics on					
11	growth performance and shrimp survival: A meta-analysis. Aquaculture 500, 196–205.					
12	https://doi.org/10.1016/j.aquaculture.2018.10.018.					
13	Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman,					
14	F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric					
15	averaging of multiple internal control genes. Genome Biol. 3, 7, research0034.					
16	https://doi.org/10.1186/gb-2002-3-7-research0034					
17	Wang Y., Al Farraj, D.A., Vijayaraghavan, P., Hatamleh, A.A., Biji, G.D., Rady, A.M., 2020.					
18	Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger					
19	shrimp Penaeus monodon. Saudi J. Biol. Sci. 27, 9, 2479–2484.					
20	https://doi.org/10.1016/j.sjbs.2020.07.010					
21	Weiss, M., Rebelein, A., Slater, M.J., 2020. Lupin kernel meal as fishmeal replacement in					
22	formulated feeds for the Whiteleg Shrimp (Litopenaeus vannamei). Aquac. Nutr. 26,					
23	752–762. https://doi.org/10.1111/anu.13034					
24	Zheng, C.C., Wu, J.W., Jin, Z.H., Ye, Z.F., Yang, S., Sun, Y.Q., Fei, H., 2020. Exogenous					
25	enzymes as functional additives in finfish aquaculture. Aquac. Nutr. 26, 213-224.					
26	https://doi.org/10.1111/anu.12995					
27	Zokaeifar, H., Balcázar, J.L., Saad, C.R., Kamarudin, M.S., Sijam, K., Arshad, A., Nejat, N.,					
28	2012b. Effects of Bacillus subtilis on the growth performance, digestive enzymes,					
29	immune gene expression and disease resistance of white shrimp, Litopenaeus					
30	vannamei. Fish Shellfish Immunol. 33, 683–689.					
31	https://dx.doi.org/10.1016/j.fsi.2012.05.027					
32						
33						
	80					

1	
2	CAPÍTULO III
3	
4	
5	Dietary supplementation of Synechococcus elongatus PCC 7942 expressing a
6	heterologous β -glucosidase on the expression of genes related to digestion,
7	immune system, and antioxidant defenses of the shrimp <i>Litopenaeus vannamei</i>
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	Manuscrito publicado no periódico Journal of Applied Phycology (FI = 3,215)
27	- <u>https://doi.org/10.1007/s10811-022-02748-5</u>
28	<u> </u>

1	
2	Effect of supplementation of Synechococcus elongatus PCC 7942 expressing a
3	heterologous β-glucosidase in the diet of white shrimp <i>Litopenaeus vannamei</i>
4	
5	
6	Luiza Medeiros ^a , Raíza Azevedo ^a , Jade Riet ^a , Bruna Nornberg ^a , Arthur Cardoso ^a , Victor
7	Torres Rosas ^b , Marcelo Borges Tesser ^b , Virgínia F. Pedrosa ^c , Luis A. Romano ^c Wilson
8	Wasielesky Jr. ^d , Luis Fernando Marins ^{a*}
9	
10	^a Laboratory of Molecular Biology, Institute of Biological Sciences, University of Rio Grande,
11	Rio Grande, RS, Brazil
12	^b Laboratory of Nutrition of Aquatic Organisms, Institute of Oceanography, Federal University
13	of Rio Grande, Rio Grande, RS, Brazil
14	^c Laboratory of Immunology and Pathology of Aquatic Organisms, Institute of Oceanography,
15	Federal University of Rio Grande, Rio Grande, RS, Brazil
16	^d Laboratory of Shrimp Culture, Institute of <u>Oceanography</u> , Federal University of Rio Grande,
17	Rio Grande, RS, Brazil
18	
19	
20	*Corresponding author: Luis Fernando Marins, Laboratory of Molecular Biology, Institute of
21	Biological Sciences, University of Rio Grande, Av. Italia Km 8, CEP 96203-900, Rio Grande,
22	RS, Brazil. Email: dqmluf@furg.br
	,

2 Abstract

Cyanobacteria, in general, are a rich source of nutrients in addition to producing bioactive 3 compounds capable of stimulating the immune system of hosts. Also, they can be 4 manipulated with relative ease to produce heterologous proteins. In the present study, a strain 5 of Synechococcus elongatus (PCC7942) was manipulated to produce a prokaryotic β-6 7 glucosidase. This strain was added to the diet of Litopenaeus vannamei shrimp and 8 parameters such as zootechnical performance, proximate composition of muscle tissue and expression of genes related to digestion, amino acid metabolism, immune system and 9 antioxidant defenses were evaluated. Histology of shrimp hepatopancreas was also performed. 10 The results showed that transgenic cyanobacteria did not produce negative effects on shrimp 11 zootechnical performance. However, an increase in lipid and phosphorus deposition was 12 13 observed in the muscle tissue of shrimp, as well as lipid in hepatopancreas. Also, an increase 14 in a gene related to the immune system (tgase) and another related to both carbohydrate metabolism and amino acid metabolism (gdh) was observed. Furthermore, it was observed 15 that both strains of cyanobacteria (wild and transgenic) produced effects on carbohydrate 16 metabolism (increased *amy* expression) and digestive system (decreased *cathB* expression). It 17 is possible that cyanobacteria in the diet may be serving as a source of carbohydrates, 18 reducing the use of proteins as a source of energy. It can be concluded that transgenic 19 20 cyanobacteria had a beneficial effect on shrimp by increasing lipid deposition in muscle and 21 hepatopancreas as well as phosphorus absorption from feed, which can minimize the 22 environmental impact of shrimp farms.

23

24 **Keywords**: cyanobacteria, probiotic, β -glucosidase, digestion, lipid deposition, phosphorous

absorption

2 Introduction

3 Probiotics have played an important role in the expansion of aquaculture worldwide, as the use of these microorganisms in farming systems has brought benefits not only to the 4 environment, but also to the health of farmed animals, especially in stimulating the immune 5 system, growth, and feed efficiency (Hai, 2015; Yao et al., 2020). According to Ringø (2020), 6 7 shrimp farming has benefited, since the 1990s, from species of bacteria from almost twenty genera, with Lactobacillus and Bacillus being the most represented. However, there are a 8 9 variety of unconventional microorganisms that have so far been used as probiotics, which 10 include gram-negative and gram-positive bacteria, yeasts, bacteriophages, actinobacteria, and 11 unicellular algae (Das et al., 2008; Akhter et al., 2015). Among these microorganisms are 12 cyanobacteria, a group of gram-negative photoautotrophic prokaryotes that have been 13 suggested as probionts for shrimp post-larvae (Preetha et al., 2007), in addition to being available as supplements to provide a high-protein diet in aquaculture (Singh et al., 2007). 14

15 Cyanobacteria are rich sources of vitamins, essential amino acids, minerals (González-Davis et al., 2012), fatty acids (Maltsev and Maltseva, 2021a), and have immunomodulatory 16 17 activity (Riccio and Lauritano, 2020). Furthermore, they can produce bioactive compounds 18 with different applications, such as the inhibition of pathogens (Santhakumari et al., 2017). 19 According to González-Davis et al. (2012), microalgae and cyanobacteria showed promising 20 antibacterial activity and can be used as a biological control in cultures of Artemia salina, in addition to supplying a large part of the energy needs of the shrimp *Litopenaeus vannamei*. 21 Furthermore, when incorporated into the diet, they can improve parameters related to growth 22 in shrimp (Sivakumar et al., 2011a). A recent study reported that cyanobacteria may have an 23 impact on the gut microbiome, leading to increased bacterial richness and playing an 24 important role in fish development and health (Rosenau et al., 2021). 25

26 Cyanobacteria can also be genetically manipulated with relative ease and can be considered an interesting platform to produce heterologous proteins due to their 27 photosynthetic efficiency (Dismukes et al., 2008). Recently, Azevedo et al. (2019) 28 29 manipulated the cyanobacterium Synechococcus elongatus for the expression of a β glucosidase of the GH3 family (AmBGL17). AmBGL17 was isolated from an Amazonian 30 soil microorganism and biochemically characterized by Bergman et al. (2014). β-glucosidases 31 catalyze the hydrolysis of β -glycosidic bonds, being key enzymes for carbohydrate 32 metabolism in many organisms (Chang et al., 2011). In agriculture, these enzymes are 33

indicators of soil quality, as their catalytic action results in the availability of glucose as a carbon source for the growth and activity of beneficial microorganisms (Merino et al., 2016). However, the application of β -glucosidases in aquaculture has not been evaluated. In this context, the aim of this study was to supplement a commercial feed with a genetically modified strain of *S. elongatus* expressing a heterologous β -glucosidase and to evaluate its effects on the expression of genes related to digestion, immune system, and antioxidant defenses of *L. vannamei* shrimp.

8

9 Material and methods

10

11 Experimental design

12 Larvae of *L. vannamei* were purchased from Aquatec (Rio Grande do Norte, Brazil). 13 Juveniles with an average weight of 2.6 ± 1.9 g were produced at the Marine Aquaculture Station from the Federal University of Rio Grande (FURG, Brazil). Shrimps were stored in 14 15 tanks with a useful volume of 150 liters with clear water. The animals were acclimated for one week. The experiment was carried out in clear water and the physical and chemical 16 17 parameters of the water were evaluated daily. Temperature, salinity and dissolved oxygen in all tanks were maintained in the range of 26.42 ± 2 °C, 32.2 ± 1 g.L⁻¹ and 6.24 ± 0.6 mg.L⁻¹ 18 during the experimental period. Aeration was constantly supplied to each tank with air stone 19 using an air blower. Every day, 30% of the water was changed in order to keep the levels of 20 nitrogen compounds within tolerance levels for the species. Three treatments, with four 21 replications each, were used, in a total of 12 tanks. The experimental groups were divided 22 into: (i) control treatment (CON), the shrimps received only commercial feed moistened with 23 saline solution (NaCl 0.9%), (ii) PCC 7942, shrimps received commercial feed added with S. 24 elongatus PCC 7942 strain and (iii) AMBGL17, shrimps received commercial feed 25 supplemented with genetically modified S. elongatus PCC 7942 (PT7AMBGL17) expressing 26 prokaryotic β-glucosidase. The diets were administered twice a day for 45 days, at a rate of 27 10% of estimated biomass at the beginning and reduced gradually to 5% at the end of the 28 experiment. The commercial feed used contains 38% crude protein (Guabi, Brazil) and is free 29 of probiotics. Each tank received 40 shrimps, resulting in a culture density of 266 shrimp.m⁻³ 30 in each experimental unit. 31

32

33 Preparation of feed supplemented with strains of *S. elongatus*

1 Two strains of S. elongatus used in this work belong to the Molecular Biology Laboratory of Federal University of Rio Grande (FURG, Brazil) and are the same ones used 2 by Azevedo et al. (2019). As a control strain, S. elongatus PCC 7942 (Invitrogen) strain was 3 used. The PT7AMBGL17 strain was manipulated by Azevedo et al. (2019) to express a 4 prokaryotic β-glucosidase. Cultures (50 mL) of S. elongatus PCC 7942 and S. elongatus 5 PT7AMBGL17 were added to erlenmevers (2 L) containing 1 L of BG-11 medium (Rippka et 6 7 al., 1979), and were maintained at 34 °C, with constant lighting of 8,000 lux. S. elongatus PT7AMBGL17 cultures were supplemented with spectinomycin (10 µg.mL⁻¹), a selection 8 agent for genetic manipulation. Expression of the gene of interest was induced by adding 5 9 µM NiSO₄ to the cultures and incubating for 24 h when the absorbance (750 nm) of the 10 cultures reached the value of 1 (Blasi et al., 2012). Optical density (OD) was monitored in a 11 12 spectrophotometer (Femto, 600s). After induction, cultures were centrifuged at $1,500 \times g$ at 4 °C for 20 min to collect cyanobacteria cells, and the supernatant was discarded (Kiataramgul 13 et al., 2020). For preparation, feed was ground into fine particles and 10% unflavored 14 15 powdered gelatin, previously dissolved in distilled water at 60 °C was added, homogenized, and added cyanobacteria pellet dissolved in distilled water at 40 °C, containing approximately 16 10^8 cells/100 g of feed. The control diet was prepared in the same way, but without adding 17 any cyanobacterial strain. The mixtures were repelletized and dried in an oven at 45 °C 18 19 overnight. After this period, the feeds were cooled slowly and stored in a clean glass bottle at 4 °C until used. This process was carried out weekly. 20

21

22 **Tissue collection**

23 At the end of the 45-day period, shrimps from each treatment were randomly removed and euthanized for analysis of proximate composition of muscle tissue (five individuals per 24 treatment, immediately frozen at -20 °C) and gene expression (seven individuals per 25 26 treatment). For gene expression analysis, hemolymph (300 μ L) of each shrimp was removed from the base of the pleopod of the first abdominal segment with 1 mL sterile syringes 27 containing 300 µL of a pre-cooled (4 °C) solution (450 mM NaCl, 10 mM KCl, HEPES 10 28 mM, 10 mM EDTA, pH 7.2) used as an anticoagulant. Hepatopancreas and muscle tissue 29 were individually dissected and placed in 500 µL of Trizol Reagent (Invitrogen, Brazil), 30 according to the manufacturer's protocol. 31

32

33 Zootechnical performance

- 1 To calculate weight gain, biomass gain, feed conversion ratio and survival, the 2 following formulas were used:
- Weight gain (g) = Pf Pi, where Pf = final weight and Pi = initial weight;
- Biomass gain = (Average Pf x number of individuals at the end) (Average Pi x initial
 number of individuals);
- 6 Feed conversion rate = feed consumption / biomass gain;
- 7 Survival (%) = (final shrimp population \times 100) / initial population.
- 8

9 **Proximate composition of muscle tissue**

The analysis of the moisture content was done by drying the samples in an oven at 100 °C until constant weight. Protein content was determined by the Kjeldahl method and total ether extract by the Soxhlet method (AOAC, 2000). Ashes were obtained by incineration in a muffle for 6 h at 600 °C. Phosphorus analyzes were performed according to Silva and Queiroz (2002), being expressed in mg/100 g of fresh sample.

15

16 Gene expression analyses

17 Total RNA extraction was performed with Trizol reagent (Invitrogen, Brazil). 18 Extracted RNA was treated with DNase I (Invitrogen, Brazil) and the concentration was 19 determined using a Biodrop spectrophotometer (Isogen Life Science). The quality was determined by 1% agarose gel electrophoresis. cDNA was synthesized using HighCapacity 20 cDNA Reverse Transcription kit (Applied Biosystems). All procedures were performed 21 following the manufacturer's protocol. Gene expression analyses were performed using 22 quantitative PCR (qPCR), according to Livak and Schmittgen (2001). For each tissue a 23 different set of genes was analyzed: (i) Hepatopancreas, five genes related to digestion 24 (amylase, *amy*; lipase, *lip*; trypsin, *tryp*; cathepsin B, *cathB*; chymotrypsin, *chymo*) and two 25 26 genes of amino acid metabolism (glutamine synthetase, gs; glutamate dehydrogenase, gdh); 27 (ii) muscle, two genes related to the antioxidant defense system (glutathione peroxidase, gpx; superoxide dismutase, sod) and (iii) hemocytes, four genes related to immune system 28 (penaeidin, pen; peroxynectin, px; prophenoloxidase, propo; transglutaminase, tgase). All 29 primers are described in Table 1. Efficiency of all primers was performed in serial dilutions 30 and 1:10 cDNA dilution of cDNA was used. Reactions were performed on the 7300 Real-time 31 PCR System platform (Applied Biosystems, Brazil), with the PowerUP SYBR Green Master 32 Mix kit (Applied Biosystems, Brazil), following the schedule: 50 °C for 2 min, 95 °C for 2 33

min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 15 s. The reference genes efla, 60S-121 and rps3A were used to normalize the gene expression data. To determine the stability of each reference gene in the different tissues analyzed the geNorm VBA applet software for Microsoft Excel (Vandesompele et al., 2002) was used. Gene expression in hemocytes and muscle was normalized using efla and rps3A. For hepatopancreas, efla and 60S-121 were used.

7

8	Table 1.	Analyzed genes	s and sequence	ce of primers	used in aF	CR reactions.
0	I WOIV I.	1 mai / Loa Somo	, and begaen		abea m qi	010100000000000000000000000000000000000

Gene	Sense (5'-3')	Antisense (5'-3')	Amplicon (nt)	GenBank
amy	ctctggtagtgctgttggct	tgtcttacgtgggactggaag	116	AJ133526
lip	actgtctcctctgctcgtc	atggtttctggaataggtgttt	131	XM027365317
tryp	cggagagctgccttaccag	tcggggttgttcatgtcctc	141	X86369
chymo	ggctctcttcatcgacg	cgtgagtgaagaagtcgg	182	XM037943862
cathB	ggatgtaacggaggcttc	ctgtatgctttgcctcca	248	XM027359505
gdh	aggttgtggaggaccagttg	ccgtggatcatctcgtaggt	166	EU496492
gs	ttccgtctcctgaaataccg	aggagccttgggaatgaagt	193	JN620540
gpx	agggacttccaccagatg	caacaactccccttcggta	117	AY973252
sod	tggagtgaaaggctctggct	acggaggttcttgtactgaaggt	175	DQ005531
ef1a	ccaccctggccagattca	gcgaacttgcaggcaatg	75	DQ858921
rps3A	ggcttgctatggtgtgctcc	tcatgctcttggctcgctg	101	XM027376915
60S-121	gttgacttgaagggcaatg	cttcttggcttcgattctg	246	XM027359925

9

10 Hepatopancreatic histology

11 For histology of the hepatopancreas, shrimp were injected with Davidson's solution (11.5% acetic acid, 22% formalin, 33% ethanol and distilled water) for 48 hours, then 12 transferred to 70% alcohol until processing. Tissues were dehydrated through successive 13 immersions in ethanol of increasing concentrations, clarified in xylol and embedded in 14 Paraplast at 60 °C. Regions of the hepatopancreas were selected and sectioned at 3 µm. 15 Histological sections were stained with Hematoxylin and Eosin (Bell and Lightner, 1988) for 16 17 lipid storage cell count. Histological sections were observed using a compound microscope at $40 \times$ magnification. 18

1 Statistical analysis

One-way analysis of variance (ANOVA) was used to assess whether there were statistical differences between treatments. Normality and heterogeneity were assessed using the Shapiro-Wilk and Levene tests, respectively. For each case, when significance was detected among treatments, a subsequent comparison of means was performed using the Tukey test. All numerical data from gene expression were expressed as mean \pm standard error. The other data were expressed as mean \pm standard deviation. Differences were considered statistically significant when p < 0.05.

- 9
- 10 **Results**
- 11

12 Zootechnical performance and proximate composition of muscle tissue

Results of zootechnical performance are described in Table 2. No significant
 differences were observed in weight gain, feed conversion and survival between treatments.

15

Table 2. Zootechnical performance of *L. vannamei* fed on commercial feed (CON) or
commercial feed supplemented with *S. elongatus* PCC 7942 (PCC7942) and *S. elongatus*PT7AMBGL17 (AMBGL17) strains for 45 days.

19

		Treatments	
	CON	PCC7942	AMBGL17
Initial weight (g)	2.98 ± 0.56	2.48 ± 0.19	2.54 ± 0.29
Final weight (g)	7.48 ± 0.17	7.73 ± 0.53	7.80 ± 0.27
Weight gain (g)	4.49 ± 0.71	5.24 ± 0.55	5.27 ± 0.36
Feed conversion ratio	1.65 ± 0.28	1.39 ± 0.15	1.37 ± 0.09
Survival (%)	98.9 ± 0.57	98.9 ± 0.57	99.3 ± 0.5

As shown in Table 3, shrimps in the treatment supplemented with *S. elongatus* PT7AMBGL17 strain had significantly higher body moisture, lipids and phosphorus values compared to the other groups (p < 0.05). There were no significant differences in the amount of ash and crude protein between groups.

5

Table 3 - Proximate composition (%) of the muscle tissue of *L. vannamei* fed commercial
feed (CON) or commercial feed supplemented with *S. elongatus* PCC 7942 (PCC7942) and *S.*

		Treatments	
	CON	PCC7942	AMBGL17
Moisture (%)	76.18 ± 0.87^{a}	77.31 ± 0.64^{a}	74.61 ± 0.63^{b}
Ash (%)	1.26 ± 0.32	1.28 ± 0.28	1.25 ± 0.28
Protein (%)	18.62 ± 2.39	18.06 ± 1.0	19.56 ± 1.26
Lipid (%)	0.82 ± 0.37^{ab}	0.55 ± 0.18^a	1.02 ± 0.52^{b}
Phosphorus (mg/100 mg)	65.73 ± 1.95^{a}	65.52 ± 1.0^{a}	73.02 ± 1.86^{b}

8 *elongatus* PT7AMBGL17 (AMBGL17) strains for 45 days.

9 Different letters represent statistically significant differences (p < 0.05).

11 Expression of genes related to immune system and antioxidant defense

The expression levels of *pen* (penaeidin), *px* (peroxynectin), *propo* (prophenoloxidase) 12 and *tgase* (transglutaminase) genes are shown in Fig. 1. Analyzing the results of genes related 13 to the immune system, no significant differences (p > 0.05) were found between treatments, 14 except for tgase gene. The expression of *tgase* was significantly higher in shrimps from 15 AMBGL17 treatment (1.076 \pm 0.120) compared to control (0.369 \pm 0.033) PCC7942 (0.528 \pm 16 0.042) treatment (p < 0.05). Analyzing the expression data of *gpx* (glutathione peroxidase) 17 and sod (superoxide dismutase) genes, related to antioxidant defense (Figure 2), no significant 18 19 differences (p > 0.05) were observed among treatments.

¹⁰

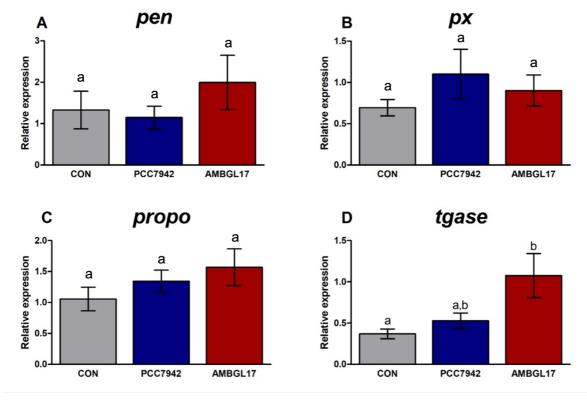
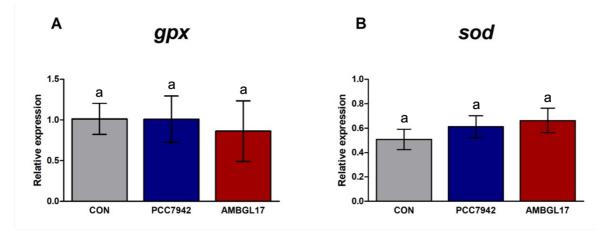



Figure 1. Relative expression of genes related to the immune system (*pen, px, propo, tgase*)
in *L. vannamei* hemocytes fed with feed supplemented with different strains of *S. elongatus*PCC 7942. CON: shrimp fed only commercial feed; PCC7942: shrimp fed commercial feed
with *S. elongatus* PCC 7942; AMBGL17: shrimp fed commercial feed with *S. elongatus*PT7AMBGL17. Different letters represent statistically significant differences (p < 0.05).

8

Figure 2. Relative expression of genes related to antioxidant defense system (*gpx* and *sod*) in *L. vannamei* muscle fed with feed supplemented with different strains of *S. elongatus* PCC
7942. CON: shrimp fed only commercial feed; PCC7942: shrimp fed commercial feed with *S.*

elongatus PCC 7942; AMBGL17: shrimp fed commercial feed with *S. elongatus* PT7AMBGL17. Different letters represent statistically significant differences (p < 0.05).

3

4

Expression of genes related to digestion and amino acid metabolism

The expression levels of digestion-related genes are shown in Fig. 3. The expression of *amy* (amylase) gene was significantly higher in shrimp from PCC 7942 (1.384 ± 0.159) and AMBGL17 (1.521 ± 0.085) treatments compared to control (0.391 ± 0.090) (p < 0.05). The opposite was observed for expression of *cathB* gene (cathepsin B) which was significantly lower in shrimp from PCC7942 (1.468 ± 0.137) and AMBGL17 (1.861 ± 0.098) treatments compared to the control group (2.906 ± 0.137). No significant differences (p > 0.05) were found between treatments for *chymo* (chymotrypsin), *tryp* (trypsin) and *lip* (lipase) genes.

The results of expression of genes involved in amino acid metabolism are shown in Figure 4. Expression of *gs* (glutamine synthetase) and *gdh* (glutamate dehydrogenase) genes were affected in different ways. While *gs* showed a significantly lower expression in PCC7942 (1.182 ± 0.121) and AMBGL17 (1.185 ± 0.073) treatments compared to the control group (2.353 ± 0.167), *gdh* gene presented a significantly higher expression in shrimp from the AMBGL17 (8.800 ± 0.630) treatment compared to the control (4.360 ± 0.231) and PCC7942 (4.678 ± 0.592) groups (p < 0.05).

19

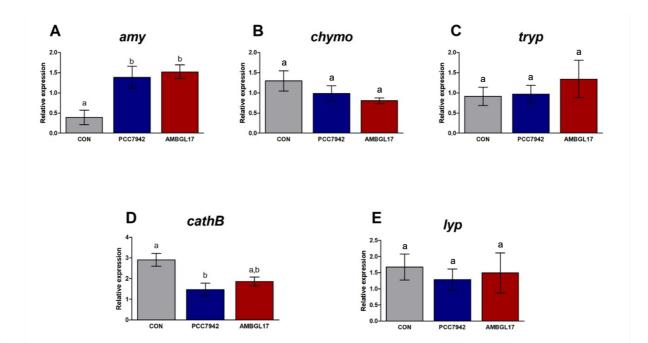


Figure 3. Relative expression of genes related to digestion (*amy*, *chymo*, *tryp*, *cathB* and *lip*) in *L. vannamei* hepatopancreas fed with feed supplemented with different strains of *S*.

elongatus PCC 7942. CON: shrimp fed only commercial feed; PCC7942: shrimp fed
 commercial feed with *S. elongatus* PCC 7942; AMBGL17: shrimp fed commercial feed with
 S. elongatus PT7AMBGL17. Different letters represent statistically significant differences (p
 < 0.05).

5

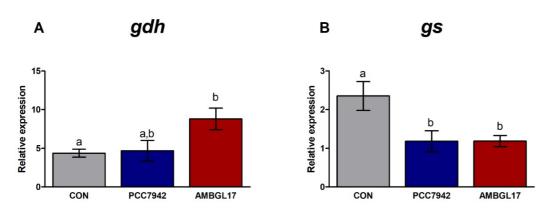


Figure 4. Relative expression of genes related to amino acid metabolism (*gdh* and *gs*) in *L. vannamei* hepatopancreas fed with feed supplemented with different strains of *S. elongatus*PCC7942. CON: shrimp fed only commercial feed; PCC7942: shrimp fed commercial feed
with *S. elongatus* PCC7942; AMBGL17: shrimp fed commercial feed with *S. elongatus*PT7AMBGL17. Different letters represent statistically significant differences (p < 0.05).

12

13 Hepatopancreatic histology

Shrimp hepatopancreas fed with diet *S. elongatus* PT7AMBGL17 had a higher number of lipid vacuoles (43.06 ± 1.08) compared to the control (24.81 ± 2.02) and to the treatment with the *S. elongatus* strain PCC7942 (39.48 ± 0.83) (Fig. 5).

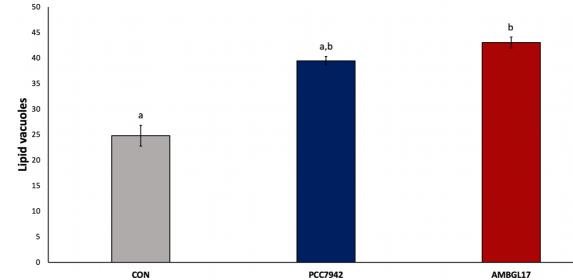


 Image: Constraint of the constraint

7 Discussion

8 This is the first investigation that evaluated the influence of supplementation of L. vannamei shrimp feed with a transgenic S. elongatus cyanobacterium expressing a 9 heterologous β -glucosidase. According to the results, the diets supplemented with 10 cyanobacteria did not change the growth, final weight, feed conversion ratio and survival of 11 12 shrimp compared to the control treatment. The results indicate the zootechnical performance of shrimp was not affected by the ingestion of cyanobacteria (transgenic or wild). Zhuang et 13 14 al. (2021) also engineered S. elongatus PCC 7942 to express the Vp28 protein, which is a structural protein of the White Spot Syndrome virus (WSSV) and plays an important role in 15 the response of L. vannamei in the early stages of infection. These authors reported a decrease 16 17 in the growth of shrimp fed with cyanobacteria compared to shrimp fed with commercial 18 feed. However, it is noteworthy that the cyanobacteria expressing Vp28 was administered as a 19 dry powder, which may have reduced its nutritional value. As in the present study, Sivakumar 20 et al. (2011) administered Synechococcus sp. as live food for juveniles of Penaeus monodon 21 shrimp and observed that, although the length was not affected at the end of the experimental period, the weight of shrimp fed with Synechococcus sp. was lower than the treatments with 22 23 Chlorela sp. and Phormidium sp. However, these authors used algal biomass as the only food source for shrimp, and not as a supplement to commercial feed. In contrast, the 24

cyanobacterium *Arthrospira platensis* replaced up to 75% of the fishmeal in the diet without
 any reduction in *L. vannamei* survival or growth (Macias-Sancho et al., 2014).

3 The results of the present study showed that the administration of S. elongatus 4 PT7AMBGL17 expressing β -glucosidase significantly affected the body composition of L. vannamei. The results revealed that shrimp fed diet supplemented with transgenic S. 5 elongatus had higher lipid and phosphorus content in muscle and lower moisture content. 6 7 Regarding the lipid content, it is known that cyanobacteria, including S. elongatus PCC 7942, can synthesize short carbon chain fatty acids (SCFAs) (Gong and Miao, 2019), which have 8 9 the potential to improve the growth performance in L. vannamei (Chen et al., 2020). However, we did not observe differences in the amount of lipids between the PCC7942 group 10 11 and the control group. This observation suggests that SCFAs eventually produced by 12 cyanobacteria are not impacting the amount of lipids in muscle tissue. However, an increase 13 in lipids was observed in shrimp from the group fed with cyanobacteria expressing β glucosidase (AMBGL17). Recently, Huang et al. (2020b) demonstrated that β-glucosidase 14 15 overexpression facilitates glucose release in transgenic tobacco. Thus, it is possible that the β glucosidase activity produced by transgenic cyanobacteria is making more sugars available to 16 17 shrimp. This hypothesis can be supported by the increased expression of the gene that codes for amylase (amy) in the hepatopancreas of shrimp that had their feed supplemented with 18 19 transgenic cyanobacteria. It is known that the increase in sugars in the circulatory system can affect the body's homeostasis. Thus, it is possible that these sugars may be being converted to 20 lipids and stored in muscle tissue or other tissues such as the hepatopancreas. In fact, the 21 histological analysis showed a significant increase in lipid vacuoles in the hepatopancreas of 22 shrimp fed with the feed supplemented with transgenic cyanobacteria. Although it is already 23 known that *de novo* lipogenesis can be induced by excess carbohydrates in the diet of humans 24 (Hellerstein, 1999; Kersten, 2001) and fish (Bou et al., 2016; Li et al., 2019; Taj et al., 2020), 25 26 this direct relationship remains to be proven in crustaceans.

Another observation of the results of the proximate composition is the increase of approximately 11% of phosphorus in the muscle tissue of shrimp fed with feed supplemented with transgenic cyanobacteria. This result indicates that the presence of β -glucosidase increased the phosphorus bioavailability for shrimp. However, this relationship is probably not straightforward, as there is no evidence that this enzyme may be involved in the phosphorus cycle. However, it is certain that β -glucosidase increases the availability of glucose to other microorganisms, which can be the source of enzymes such as phosphatases and phytases that act in the conversion of organic to inorganic phosphorus, which can be
absorbed by shrimp and other organisms. The greater absorption of phosphorus by organisms
also has environmental implications, as it reduces the contribution to adjacent ecosystems and
its consequent eutrophication.

Romano et al. (2015) reported that the addition of a mixture of organic acids can 5 increase the bioavailability of phosphorus in L. vannamei, with a consequent increase in the 6 7 immune response and resistance to pathogenic bacteria. To assess whether the increase in phosphorus absorption observed in the present study had effects on the immune system of the 8 9 shrimp, the expression of the genes pen, px, propo and tgase was evaluated. Of the genes related to the immune system analyzed, only tgase was significantly induced in shrimp fed on 10 11 the feed supplemented with the transgenic cyanobacteria. Transglutaminase (TGase) is part of 12 the coagulation system of L. vannamei and plays an important role in inhibiting the entry of 13 pathogens into the body, which is why it is considered an important immunological factor in shrimp (Zheng et al., 2018b). Furthermore, TGase has been shown to be involved in the 14 15 regulation of certain genes related to the immune system, particularly antimicrobial peptides (AMPs), suggesting that the release of these may depend on the activation of the coagulation 16 17 system (Zhu et al., 2016). Therefore, the increase in *tgase* expression observed in this study 18 suggests an increase in the immune responsiveness of L. vannamei. Other genes analyzed related to the immune system of shrimp such as sod and gpx (Pilotto et al., 2019; Zheng et al., 19 20 2018), which play a role in the antioxidant defense system, were not altered by treatments with cyanobacteria. 21

Regarding digestion, the treatments tested in this study showed two different types of 22 impacts on gene expression. The first is related to the presence of cyanobacteria (regardless of 23 whether it is transgenic or wild), whose effect can be observed in the increased expression of 24 the amy gene in treatments PCC7942 and AMBGL17, or in the decreased expression of cathB 25 26 and gs in these same treatments. In the case of amylase, it can be suggested that the 27 cyanobacteria itself is making more sugars available to the shrimp since these microorganisms are able to produce and store glycogen from the fixed CO₂ through photosynthesis. For 28 29 example, Synechococcus sp. PCC 7002, an euryhaline species, has high glycogen production and is considered a promising source of carbohydrates to produce biofuels (Aikawa et al., 30 2014). Furthermore, functional genes related to sucrose synthesis have been identified in S. 31 elongatus PCC 7942 (Martínez-Noël et al., 2013). Thus, the presence of sugars produced by 32 cyanobacteria would be inducing the expression of shrimp amylase. 33

1 For *cathB* and *gs* the effect was the opposite. The presence of cyanobacteria decreased the expression of those genes. Cathepsin B is a cysteine proteinase whose gene was first 2 identified in L. vannamei by Stephens et al. (2012). These authors reported the expression of 3 *cathB* in most shrimp tissues, except for pleopods and ocular peduncle. Furthermore, they 4 observed that this enzyme participates not only in the hydrolysis of intracellular proteins 5 during fasting, but also in the hydrolysis of extracellular proteins after food ingestion. Thus, 6 7 this enzyme plays an important role in the digestive processes that involve the provision of amino acids for the body. The fact that the presence of the cyanobacteria used in the present 8 9 study decreased the expression of *cathB* in the shrimp hepatopancreas suggests that the shrimp metabolism is using more sugars than proteins as an energy source. If this is the case, 10 11 the lower use of protein as an energy source implies a lower impact on the shrimp's ammonia 12 metabolism. In fact, the gs gene that codes for glutamine synthetase is considered an 13 important marker of ammonia-induced stress, and its decrease observed in groups of shrimps treated with cyanobacteria may be related to the greater use of sugars in relation to protein 14 15 catabolism. Qiu et al. (2018) demonstrated that the expression of gs is increased in L. vannamei exposed to higher concentrations of ammonia, concluding that shrimp accelerate 16 17 the production of glutamine from glutamate and NH_4^+ to reduce the stress caused by excess nitrogen in the body. Finally, an increase in *gdh* was observed in the group of shrimps treated 18 with transgenic cyanobacteria (AMBGL17), when compared to the control group. Glutamate 19 20 dehydrogenase is a crucial enzyme that links amino acid metabolism to carbohydrate metabolism. This enzyme is present in the mitochondrial matrix of eukaryotic cells and 21 catalyzes the reversible reaction of glutamate to α -ketoglutarate + NH₄⁺. Thus, this enzyme 22 works as a modulator in the synthesis of amino acids from carbohydrates, or in the oxidative 23 24 deamination of glutamate to form α -ketoglutarate which can be used as fuel for the Krebs cycle to drive the electron transport chain and production of ATP by oxidative 25 phosphorylation (Dawson and Storey, 2012). In the scenario where the group of shrimps 26 treated with cyanobacteria expressing a β-glucosidase had greater availability of 27 carbohydrates, it is feasible to assume that gdh is acting to form amino acids from 28 carbohydrate derivatives. 29

In summary, the present study reports the use of cyanobacterial strains (wild or manipulated to express a prokaryotic β -glucosidase) as an additive in *L. vannamei* shrimp feed. The results showed that both cyanobacteria did not produce negative effects on the zootechnical performance of the shrimp. However, an increase in the deposition of lipids and

phosphorus in the muscle tissue of shrimp treated with transgenic cyanobacteria was 1 observed. In this group, an increase in a gene related to the immune system (tgase) and 2 another one related to both carbohydrate metabolism and amino acid metabolism (gdh) was 3 also observed. In addition, it was observed that both strains of cyanobacteria produced effects 4 on carbohydrate metabolism (increased expression of *amy*) and on the digestive system 5 (decreased expression of *cathB*). Apparently, cyanobacteria in the feed may be serving as a 6 7 source of carbohydrates, reducing the use of proteins as an energy source. It can be concluded that cyanobacteria (wild or transgenic) had a beneficial effect on shrimp not only by 8 9 increasing the expression of genes related to the immune system and digestion, but also by the greater absorption of phosphorus from the feed, which can minimize environmental impact of 10 11 shrimp farms.

12

13 Acknowledgements

The authors would like to thank everyone who contributed to this work, especially the members of the Molecular Biology Laboratory of Federal University of Rio Grande (FURG, Brazil) and the members of the Marine Aquaculture Station of the Federal University of Rio Grande (FURG, Brazil).

18

19 Author contribution

All authors contributed to the conception and design of the study. All authors contributed to the visualization of data, drafting of the article, and revising it. All authors approved the final version to be submitted.

23

24 Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 434259/2018-7 and 426147/2018-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Financial Code 001). L. F. Marins, M. B. Tesser, L. A. Romano and W. Wasielesky are research fellows from CNPq (Proc. 309634/2018-0, 304474/2020-7, 301245/2016-9, and 310652/2017-0, respectively).

30

31 **Competing interests**

The authors declare no competing interests

33

1 References

- Aikawa S, Nishida A, Ho SH, Chang JS, Hasunuma T, Kondo A (2014) Glycogen production
 for biofuels by the euryhaline cyanobacteria *Synechococcus sp.* strain PCC 7002 from
 an oceanic environment. Biotechnol Biofuels 7:88 doi:10.1186/1754-6834-7-88
- Akhter N, Wu B, Memon AM, Mohsin M. (2015) Probiotics and prebiotics associated with
 aquaculture: A review. Fish Shellfish Immunol 45(2):733-41.
 doi:10.1016/j.fsi.2015.05.038
- Azevedo R, Lopes JL, de Souza MME, Quirino BF, Cançado LJ, Marins LF (2019)
 Synechococcus elongatus as a model of photosynthetic bioreactor for expression of
 recombinant β-glucosidases. Biotechnol Biofuels 12:1. doi: 10.1186/s13068-019 1505-9
- Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. World
 Aquaculture Society, Baton Rouge, LA.
- Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D'haeseleer P, Simmons AB,
 Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil
 metagenomic library. FEMS Microbiol Lett. 351:147–55. doi:10.1111/15746968.12332
- Blasi B, Peca L, Vass I, Kós PB (2012) Characterization of stress responses of heavy metal
 and metalloid inducible promoters in *Synechocystis* PCC6803. J Microbiol Biotechnol
 22:166–169. doi:10.4014/jmb.1106.06050
- Bou M, Todorčević M, Torgersen J, Škugor S, Navarro I, Ruyter B. (2016) De novo
 lipogenesis in Atlantic salmon adipocytes. Biochim Biophys Acta (1 Pt A):86-96 doi:
 10.1016/j.bbagen.2015.10.022.
- Chang J, In-Hye Park, Yong-Seok Lee, Soon-Cheol Ahn, Yi Zhou, Yong-Lark Choi, (2011)
 Cloning, expression, and characterization of β-glucosidase from *Exiguobacterium sp*.
 DAU5 and transglycosylation activity Biotechnol Bioprocess Eng 16:97–106 doi:
 10.1007/s12257-010-0092-1
- Chen M, Chen XQ, Tian LX, Liu YJ, Niu J (2020) Beneficial impacts on growth, intestinal
 health, immune responses and ammonia resistance of pacific white shrimp
 (*Litopenaeus vannamei*) fed dietary synbiotic (mannan oligosaccharide and *Bacillus licheniformis*). Aquac Rep 17 doi: 10.1016/j.aqrep.2020.100408

- Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in
 aquaculture. Appl Microbiol and Biotechnol 81-419:429 doi:10.1007/s00253-008 1731-8
- Dawson N J, Storey KB (2012) An enzymatic bridge between carbohydrate and amino acid
 metabolism: Regulation of glutamate dehydrogenase by reversible phosphorylation in
 a severe hypoxia-tolerant crayfish. J Comp Physiol B: Biochem Syst and Environ
 Physiol 182(3):331–340 doi:10.1007/s00360-011-0629-4
- 8 Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic
 9 phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin
 10 Biotechnol 19:235–40 doi: 10.1016/j.copbio.2008.05.007
- Gong Y, Miao X (2019) Short chain fatty acid biosynthesis in microalgae *Synechococcus sp.* PCC 7942. Mar Drugs 17(5):255 doi:10.3390/md17050255
- González-Davis O, Ponce-Rivas E, Sánchez-Saavedra MDP, Muñoz-Márquez ME, Gerwick
 WH (2012) Bioprospection of microalgae and cyanobacteria as biocontrol agents
 against *Vibrio campbellii* and their use in white shrimp *Litopenaeus vannamei* culture.
 J World Aquac Soc 43:387–399 doi:10.1111/j.1749-7345.2012.00567.x
- Hai NV (2015) The use of probiotics in aquaculture. J Appl Microbiol 119: 917-935
 doi:10.1111/jam.12886
- Hellerstein MK (1999) De novo lipogenesis in humans: metabolic and regulatory aspects. Eur
 J Clin Nutr Suppl 1: S53-65 doi: 10.1038/sj.ejcn.1600744.
- Huang CH, Huang TL, Liu YC, Chen TC, Lin SM, Shaw SY, Chang CC (2020)
 Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon
 Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its
 use as a reporter. Transgenic Res 29:511–527 doi:10.1007/s11248-020-00212-z
- Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO
 Rep 2(4):282-286 doi:10.1093/embo-reports/kve071
- Kiataramgul A, Maneenin S, Purton S, Areechon N, Hirono I, Brocklehurst TW, Unajak S
 (2020) An oral delivery system for controlling white spot syndrome virus infection in
 shrimp using transgenic microalgae. Aquaculture 521. doi:
 10.1016/j.aquaculture.2020.735022
- Li H, Xu W, Jin J, Zhu X, Yang Y, Han D, Liu H, Xie S (2019) Effects of dietary carbohydrate and lipid concentrations on growth performance, feed utilization,

- glucose, and lipid metabolism in two strains of gibel carp. Front Vet Sci 29:06-165
 doi: 10.3389/fvets.2019.00165.
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time
 quantitative PCR and the 2-ΔΔCT method. Methods 25:402-8
 doi:10.1006/meth.2001.1262
- Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014)
 Fishmeal substitution with Arthrospira (*Spirulina platensis*) in a practical diet for *Litopenaeus vannamei*: Effects on growth and immunological parameters. Aquaculture
 426–427, 120–125 doi: 10.1016/j.aquaculture.2014.01.028
- Maltsev Y, Maltseva K (2021) Fatty acids of microalgae: diversity and applications. Rev
 Environ Sci Biotechnol doi:10.1007/s11157-021-09571-3
- Martínez-Noël GM, Cumino AC, Kolman M de L, Salerno GL (2013) First evidence of
 sucrose biosynthesis by single cyanobacterial bimodular proteins. FEBS Lett
 587(11):1669-74 doi: 10.1016/j.febslet.2013.04.012.
- Merino C, Godoy R, Matus F (2016) Soil enzymes and biological activity at different levels
 of organic matter stability. J Soil Sci Plant Nutr 16: 14-30 doi: 10.4067/S071895162016005000002
- Pilotto MR, Milanez S, Moreira RT, Rosa RD, Perazzolo LM (2019) Potential
 immunomodulatory and protective effects of the *Arthrospira*-based dietary supplement
 on shrimp intestinal immune defenses. Fish Shellfish Immunol 88:47–52. doi:
 10.1016/j.fsi.2019.02.062
- Preetha R, Jayaprakash NS, Singh IS (2007) *Synechocystis* MCCB 114 and 115 as putative
 probionts for *Penaeus monodon* post-larvae. Dis Aquat Organ 74(3):243-7 doi:
 10.3354/dao074243. PMID: 17465309.
- Qiu L, Shi X, Yu S, Han Q, Diao X, Zhou H (2018) Changes of ammonia-metabolizing
 enzyme activity and gene expression of two strains in shrimp *Litopenaeus vannamei* under ammonia stress. Front Physiol 23:9-211 doi: 10.3389/fphys.2018.00211.
- Riccio G, Lauritano C (2020) Microalgae with immunomodulatory activities. Mar Drugs doi:
 10.3390/md18010002
- 30 Ringø E, van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK (2020)
- Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture.
 J Appl Microbiol 129:116–136. doi:10.1111/jam.14628

- Rippka E, Deruelles J, Waterbury NB (1979) Generic assignments, strain histories and
 properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1-61
 doi:10.1099/00221287-111-1-1
- Romano N, Koh C, Ng W (2015) Dietary microencapsulated organic acids blend enhances
 growth, phosphorus utilization, immune response, hepatopancreatic integrity and
 resistance against *Vibrio harveyi* in white shrimp, *Litopenaeus vannamei*. Aquaculture
 435:228-236. doi: 10.1016/j.aquaculture.2014.09.037
- Rosenau S, Oertel E, Mott AC, Tetens J (2021) The effect of a total fishmeal replacement by *Arthrospira platensis* on the microbiome of african catfish (*Clarias gariepinus*). Life
 11:558. doi:10.3390/life11060558
- Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi AV (2017) In vitro and in
 vivo exploration of palmitic acid from *Synechococcus elongatus* as an antibiofilm
 agent on the survival of *Artemia franciscana* against virulent vibrios. J Invertebr
 Pathol 150:21–31. doi: 10.1016/j.jip.2017.09.001
- Silva JD, Queiroz AC (2002) Análise de alimentos: métodos químicos e biológicos. 3.ed.
 Viçosa, MG: UFV, pp. 235.
- Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: An emerging source for
 drug discovery. J Antibiotics 64(6):401-412 doi:10.1038/ja.2011.21
- Sivakumar N, Sundararaman M, Selvakumar G (2011) Efficacy of micro algae and
 cyanobacteria as a live feed for juveniles of shrimp *Penaeus monodon*. Afr J
 Biotechnol 10:11594–11599. doi:10.5897/AJB11.710
- Stephens A, Rojo L, Araujo-Bernal S, Garcia-Carreño F, Muhlia-Almazan A (2012)
 Cathepsin B from the white shrimp *Litopenaeus vannamei*: cDNA sequence analysis,
 tissues-specific expression and biological activity. Comp Biochem Physiol- B
 Biochem Mol Biol 161:32–40 doi: 10.1016/j.cbpb.2011.09.004
- Taj S, Irm M, Jin M, Yuan Y, Andriamialinirina HJT, Zhou Q (2020) Effects of dietary
 carbohydrate to lipid ratios on growth performance, muscle fatty acid composition,
 and intermediary metabolism in juvenile black seabream (*Acanthopagrus schlegelii*).
 Front Physiol 3:11-507 doi: 10.3389/fphys.2020.00507.
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F
 (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric
 averaging of multiple internal control genes. Genome Biol 3:1–12 doi:10.1186/gb 2002-3-7-research0034.

1	Yao YY, Yang YL, Gao CC, Zhang FL, Xia R, Li D, Hu J, Ran C, Zhang Z, Liu-Clarke J,
2	Zhou ZG (2020) Surface display system for probiotics and its application in
3	aquaculture. Rev Aquac 12(4): 2333-2350 doi:10.1111/raq.12437
4	Zheng Z, Xu W, Aweya JJ, Zhong M, Liu S, Lun J, Chen J, Zhang Y (2018) Functional
5	domains of Litopenaeus vannamei transglutaminase and their involvement in
6	immunoregulation in shrimp. Fish and Shellfish Immunol 81: 168-175 doi:
7	10.1016/j.fsi.2018.07.024
8	Zhu YT, Li D, Zhang X, Li XJ, Li WW, Wang Q (2016) Role of transglutaminase in immune
9	defense against bacterial pathogens via regulation of antimicrobial peptides. Dev
10	Comp Immunol 55:39–50 doi: 10.1016/j.dci.2015.10.005
11	Zhuang MM, Peng W, Xu Y et al (2021) Construction and application of easy-to-detect
12	cyanobacteria with vp28 gene. J Appl Phycol 33:2341-2348 doi:10.1007/s10811-021-
13	02414-2
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

2 DISCUSSÃO GERAL

Probióticos são amplamente utilizados na aquicultura e têm proporcionado beneficios
à saúde dos animais aquáticos (Yao et al., 2020). Os efeitos benéficos da administração de
probióticos foram reportados como fontes de melhora na resposta imunológica e no sistema
digestivo, através do estímulo da produção de enzimas endógenas que contribui com a
melhora das atividades enzimáticas no intestino (Butt et al., 2021; Ringø et al., 2020).

8 Dentre as opções de obtenção de probióticos para a carcinocultura, o isolamento de 9 microrganismos a partir do intestino do camarão é uma alternativa interessante com grande 10 potencial de aplicação na aquicultura comercial (Li et al., 2021; Ock Kim et al., 2020; Wang 11 et al., 2020; Zuo et al., 2019). Além disso, uma outra opção é o desenvolvimento e o uso de 12 microrganismos geneticamente modificados que podem ser utilizados como suplemento 13 alimentar com o objetivo de melhorar o fator de condição dos animais, estimulando o sistema 14 imunológico, reduzindo a resposta inflamatória e o estresse oxidativo (Erpel et al., 2016; 15 Santos et al., 2020), como biorreatores para a produção de moléculas capazes de interferir nos 16 sistemas fisiológicos de peixes (Santos et al., 2020), ou como sistema de expressão heteróloga para a produção de vacinas orais para L. vannamei (Zhu et al., 2020). 17

18 Na presente Tese observou-se que o uso de diferentes cepas (convencionais ou não 19 convencionais) como aditivos dietéticos afetou de forma distinta a composição corporal dos 20 camarões. No entanto, quanto ao ganho de peso e na taxa de conversão alimentar, não houve 21 diferenças significativas nos três experimentos realizados. No capítulo I, a suplementação da 22 dieta com a cepa E de B. subtilis promoveu significativo aumento na composição de lipídeos 23 no músculo e na contagem de vacúlos lipídicos nos hepatopâncreas de L. vannamei. Outro estudo também relatou que a administração de probióticos aumenta o conteúdo de lipídios no 24 músculo (Sadat Hoseini Madani et al., 2018). Na suplementação da dieta com a cepa 25 transgênica de B. subtilis expressando a fitase (capítulo II), observou-se um aumento na 26 concentração de fósforo no tecido muscular dos camarões, sugerindo que o fitato presente na 27 matéria vegetal da ração foi degradado pela fitase fúngica secretada pelo probiótico 28 geneticamente modificado. Camarões alimentados com S. elongatus transgênicas 29 suplementada na dieta (capítulo III) apresentaram maior teor de lipídeo e fósforo no músculo 30 31 e menor teor de umidade. Um estudo recente demonstrou que a superexpressão de um gene multifuncional β-glicosidase facilita a liberação de glicose em tabaco transgênico (Huang et 32 al., 2020). Assim, é possível que a atividade da β -glicosidase produzida por cianobactérias 33

1 transgênicas esteja disponibilizando mais açúcares para os camarões. Essa hipótese pode ser 2 corroborada pelo aumento da expressão do gene que codifica a amilase (amy) no hepatopâncreas de camarões que tiveram sua alimentação suplementada com cianobactérias 3 transgênicas. Sabe-se que o carboidrato absorvido que é utilizado para fornecer energia pode 4 contribuir para deposição de lipídios e glicogênio após a conversão bioquímica e que a 5 composição lipídica do corpo dos peixes foi influenciada pelos níveis de carboidratos e 6 7 lipídios da dieta (Gümüş e İkiz, 2009). Além disso, o aumento significativo de fósforo no músculo de animais que tiveram a ração suplementada S. elongatus P_{T7}AMBGL17 8 expressando β-glicosidase pode ser devido ao papel indireto que a β-glucosidase desempenha 9 10 na aquisição de P (Zacher et al., 2021). Sabe-se que o suplemento de fósforo pode contribuir 11 para maior deposição de zinco (Niu et al., 2008), o que pode promover ma melhora na 12 imunidade do L. vannamei (Shi et al., 2021). De fato, quando analisados os genes 13 relacionados ao sistema imunológico, a tgase foi induzida significativamente em camarões alimentados com a ração suplementada com a cianobactéria transgênica. Sabe-se que a TGase 14 15 demonstrou estar envolvida na regulação de certos genes relacionados ao sistema imunológico, particularmente peptídeos antimicrobianos (AMPs), sugerindo que a liberação 16 17 destes pode depender, dentre outros fatores, da ativação do sistema de coagulação (Zhu et al., 18 2016).

19 Com relação à expressão de genes, o uso da cepa E de B. subtilis isolada do intestino do camarão (capítulo I) e da cepa KMO gerou diferenças significativas na expressão dos genes 20 que codificam para enzimas relacionadas à digestão (chymo, tryp e lip), que tiveram uma 21 expressão mais baixa comparada ao controle. Além disso, observou-se que a expressão do 22 gene *cathB* foi significativamente reduzida em camarões tratados com a cepa E em relação à 23 cepa KM0, o que pode demonstrar que a cepa E é capaz de produzir e secretar mais cisteína-24 proteases do que a cepa KM0. Gao et al. (2019) demonstram que enzimas extracelulares da 25 26 microbiota intestinal também estão envolvidas no metabolismo de substâncias 27 macromoleculares, como aminoácidos e carboidratos, logo sugere-se que intestino hospedeiro 28 pode diminuir a produção e secreção de tais enzimas, começando com uma diminuição na 29 taxa de transcrição desses genes. Sobre o metabolismo de aminoácidos, o gene gdh teve uma taxa de transcrição menor em hepatopâncreas de camarão nos tratamentos com probióticos, 30 enquanto o gene gs também teve uma menor taxa de transcrição, porém, apenas para os 31 animais alimentados com a cepa E. Possivelmente a menor expressão de gdh pode ser uma 32 resposta a uma alta concentração de lipídios no hepatopâncreas dos camarões que foram 33

tratados com as cepas probióticas, pois a glutamato desidrogenase induz a produção de intermediários do ciclo de Krebs, e um dos intermediários (citrato) é usado para a síntese de lipídios (Dawson e Storey, 2012). Além disso, a menor taxa de transcrição de *gs* pode indicar que a cepa E tem capacidade para reduzir os compostos nitrogenados presentes na água de criação e, assim, reduzir o estresse no camarão.

Com relação ao capítulo II, a quantificação da expressão de genes relacionados à 6 7 digestão demonstrou uma regulação negativa significativa da transcrição de proteases (chymo e tryp) e lipase (lip), em ambos os tratamentos KMO e KMO-Phy. Sabe-se que as espécies de 8 9 Bacillus são capazes de produzir e secretar proteases e lipases. Priest (1977) já descreveu inúmeras exoenzimas digestivas produzidas por espécies de Bacillus, especialmente 10 11 carboidratases, proteases e lipases. Algumas proteases de Bacillus se destacam por sua alta 12 estabilidade em condições ambientais adversas, como temperaturas e pH extremos, presença 13 de solventes orgânicos, detergentes e agentes oxidantes (Contesini et al., 2018). Além disso, de acordo com Eggert et al. (2003), B. subtilis pode produzir e secretar dois tipos de lipases 14 15 (lipA e lipB) a partir de genes que são diferencialmente expressos de acordo com as 16 condições de crescimento.

17 A respeito dos genes analisados no capítulo III, o uso de cianobactérias (transgênicas 18 ou selvagens) na dieta apresentou um aumento da expressão de amy e diminuição da expressão de cathB e gs. Esses resultados sugerem que o metabolismo do camarão está 19 20 utilizando mais açúcares do que proteínas como fonte de energia, o que pode implicar no menor uso de proteína como fonte de energia, com consequente impacto no metabolismo de 21 amônia de camarões. Além disso, o uso de cianobactérias transgênicas apresentou maiores 22 23 níveis transcricionais do gene *gdh* quando comparado ao grupo controle. No cenário em que o grupo de camarões tratados com cianobactérias expressando uma β-glicosidase apresentou 24 maior disponibilidade de carboidratos, é possível supor que gdh esteja atuando na formação 25 de aminoácidos a partir de derivados de carboidratos. 26

Finalmente, sugere-se que o uso de diferentes probióticos (convencionais ou não
convencionais) impactou de forma significativa o sistema imune e os processos digestivos do
camarão. O uso de um probiótico endógeno resultou em um aumento da concentração de
lípidíos no músculo e no hepatopâncreas dos animaise. Pôde-se observar, também, os
benefícios dos probióticos transgênicos, como o *B. subtilis* KM0-Phy expressando uma fitase
e de *S. elongatus* P_{T7}AMBGL17 expressando uma β-glicosidase na dieta de *L. vannamei*.
Além disso, o uso dos probióticos transgênicos aumentou a deposição de fósforo no músculo

de *L. vannamei*, o que pode contribuir para um ganho econômico e ambiental para a
 carcinocultura, visto que a adição desse mineral impacta no custo da ração e sua excreção é o
 principal fator que contribui para a e eutrofização dos ambientes aquáticos.

4

5 CONSIDERAÇÕES FINAIS

Constatamos que a cepa endógena do *L. vannamei* (cepa E) foi capaz de
 aumentar significativamente a deposição de lipídios no músculo e no hepatopâncreas do
 camarão, além de diminuir a expressão de genes relacionados à digestão e ao metabolismo de
 aminoácidos. Devido aos seus efeitos benéficos para o camarão, este probiótico pode ser uma
 alternativa para a carcinocultura.

11

 Constatamos que a fitase de *Aspergillus fumigatus* expressa pela cepa KM0 Phy foi capaz de aumentar a deposição de fósforo no músculo de *L. vannamei* alimentados
 com uma dieta comercial.

✓ Ao nosso conhecimento, o capítulo II representa o primeiro estudo em *L*.
 vannamei que utiliza uma linhagem bacteriana transgênica do gênero *Bacillus* capaz de
 excretar uma fitase recombinante que foi suplementado à uma ração comercial. Os resultados
 demonstraram que a fitase heteróloga é capaz de disponibilizar mais fósforo da ração,
 podendo diminuir os custos relacionados à incorporação deste elemento nas rações
 comerciais.

Ao nosso conhecimento, o capítulo III representa o primeiro estudo em que uma cianobactéria (*S. elongatus*) geneticamente programada para expressar uma β -glicosidase heteróloga foi utilizada como suplemento na ração de *L. vannamei*. Esta cianobactéria disponibilizou mais carboidratos para o camarão, resultando numa maior deposição de lipídios no músculo e no hepatopâncreas do camarão, além de melhorar a biodisponibilidade de fósforo para o hospedeiro o que, além de alterar o metabolismo, também pode minizar os impactos ambientais da carcinicultura.

27

28 **PERSPECTIVAS**

29 ✓ Sugere-se que a cepa E de *B. subt*ilis, isolada do trato intestinal de *L.* 30 *vannamei*, tenha seu genoma completamente sequenciado para que se transforme numa
 31 plataforma exclusiva para a produção de moléculas de interesse para a carcinocultura.

32 Levando em consideração que a cepa geneticamente modificada de *B. subtilis* 33 que expressa uma fitase heteróloga induziu a um aumento de 39 % no conteúdo de fósforo no

músculo do camarão, sugere-se o desenvolvimento de experimentos com quantidades
 decrescentes de fósforo na ração para avaliar o quanto esse probiótico poderia economizar
 deste elemento na alimentação de camarões.

4 \checkmark Uma vez que a cepa de *S. elongatus* expressando uma β-glicosidase parece 5 estar disponibilizando mais carboidratos para camarões, sugere-se que sejam realizados 6 experimentos com quantidades decrescentes destes elementos na dieta para avaliar o quanto 7 este probiótico não convencional estaria compensando o metabolismo de açúcares do 8 hospedeiro.

- 9
- 10
- 11

DEEE

2 3

REFERÊNCIAS BIBLIOGRÁFICAS DA DISCUSSÃO GERAL

- Amoah, K., Huang, Q.C., Tan, B.P., Zhang, S., Chi, S.Y., Yang, Q.H., Liu, H.Y., Dong, X.H.
 (2019) Dietary supplementation of probiotic *Bacillus coagulans* ATCC 7050,
 improves the growth performance, intestinal morphology, microflora, immune
 response, and disease confrontation of Pacific white shrimp, *Litopenaeus vannamei*.
 Fish and Shellfish Immunology 87:796–808. https://doi.org/10.1016/j.fsi.2019.02.029
- Butt, U.D., Lin, N., Akhter, N., Siddiqui, T., Li, S., Wu, B. (2021) Overview of the latest
 developments in the role of probiotics, prebiotics and synbiotics in shrimp
 aquaculture. Fish and Shellfish Immunology 114:263-281.
 https://doi.org/10.1016/j.fsi.2021.05.003
- Chai, P.C., Song, X.L., Chen, G.F., Xu, H., Huang, J. (2016) Dietary supplementation of
 probiotic *Bacillus* PC465 isolated from the gut of *Fenneropenaeus chinensis* improves
 the health status and resistance of *Litopenaeus vannamei* against white spot syndrome
 virus. Fish and Shellfish Immunology 54:602–611.
 https://doi.org/10.1016/j.fsi.2016.05.011
- Contesini, F.J., Melo, R.R., Sato H.H. (2018) An overview of *Bacillus* proteases: from
 production to application. Crit. Rev. Biotechnol. 38:321–334.
 <u>https://doi.org/10.1080/07388551.2017.1354354</u>
- Dawson, N.J., Storey, K.B. (2012) An enzymatic bridge between carbohydrate and amino
 acid metabolism: Regulation of glutamate dehydrogenase by reversible
 phosphorylation in a severe hypoxia-tolerant crayfish. J. Comp. Physiol. B: Biochem.
 Syst. and Environ. Physiol., 182(3): 331–340. <u>https://doi.org/10.1007/s00360-011-</u>
 0629-4
- Eggert, T., Brockmeier, U., Dröge, M.J., Quax, W.J., Jaeger, K.E. (2003) Extracellular lipases 26 27 from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid FEMS Microbiol. Lett. 225:319-28 supply and external pH. 324. https://doi.org/10.1016/S0378-1097(03)00536-6 29
- Erpel, F., Restovic, F., Arce-Johnson, P. (2016) Development of phytase-expressing
 Chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnology
 16, 29. https://doi.org/10.1186/s12896-016-0258-9

- Gao, S., Pan, L., Huang, F., Song, M., Tian, C., Zhang, M. (2019) Metagenomic insights into
 the structure and function of intestinal microbiota of the farmed Pacific white shrimp
 (*Litopenaeu vannamei*). Aquaculture 499: 109–118.
 https://doi.org/10.1016/j.aquaculture.2018.09.026
- Gümüş, E. and Ikiz, R. (2009) Effect of dietary levels of lipid and carbohydrate on growth
 performance, chemical contents and digestibility in rainbow trout, *Oncorhynchus mykiss* Walbaum, 1792. Pakistan Veterinary Journal 29(2):59-63.
- Huang, C.H., Huang, T.L., Liu, Y.C., Chen, T.C., Lin, S.M., Shaw, S.Y., Chang, C.C. (2020)
 Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon *Sulfolobus solfataricus* in transgenic tobacco could facilitate glucose release and its
 use as a reporter. Transgenic Research 29: 511–527. https://doi.org/10.1007/s11248020-00212-z
- Kumar, V., Sinha, A.K., Makkar, H.P.S., de Boeck, G., Becker, K. (2012) Phytate and
 phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition 96: 333364. https://doi.org/10.1111/j.1439-0396.2011.01169.x
- Li, H., Fan, S., Gao, Y., Cai, Y., Chu, Z., Wang, L. (2021) Evaluation of modulatory
 properties of *Bacillus cereus* isolated from the gut of *Litopenaeus vannamai* on
 growth, intestinal morphology, digestive enzyme activities, immune responses and
 disease resistance of *Litopenaeus vannamei*. Aquaculture Research 52: 1299–1310.
 https://doi.org/10.1111/are.14988
- Niu, J., Liu, Y.J., Tian, L.X., Mai, K.S., Yang, H.J., Ye, C.X., Gao, W. (2008) Effect of
 dietary phosphorus sources and varying levels of supplemental phosphorus on
 survival, growth and body composition of postlarval shrimp (*Litopenaeus vannamei*).
 Aquaculture Nutrition 14:472–479. https://doi.org/10.1111/j.1365-2095.2007.00552.x
- Ock Kim, Y., Mahboob, S., Viayaraghavan, P., Biji, D., Abdullah Al-Ghanim, K., Al-Misned,
 F., Ahmed, Z., Kwon, J.T., Won Na, S., Kim, H.J. (2020) Growth promoting activity
 of *Penaeus indicus* by secondary metabolite producing probiotic bacterium *Bacillus subtilis* isolated from the shrimp gut. Journal of King Saud University Science 32:
 1641–1646. <u>https://doi.org/10.1016/j.jksus.2019.12.023</u>
- Priest, F.G. (1977) Extracellular enzyme synthesis in the genus *Bacillus*. Bacteriol. Rev.
 41(3): 711–753. <u>https://doi:10.1128/br.41.3.711-753.1977</u>
- Ringø, E., van Doan, H., Lee, S.H., Soltani, M., Hoseinifar, S.H., Harikrishnan, R., Song,
 S.K., (2020) Probiotics, lactic acid bacteria and bacilli: interesting supplementation for

- aquaculture. Journal of Applied Microbiology 129: 116–136.
 https://doi.org/10.1111/jam.14628
- Sadat Hoseini Madani, N., Adorian, T.J., Ghafari Farsani, H., Hoseinifar, S.H. (2018) The
 effects of dietary probiotic Bacilli (*Bacillus subtilis* and *Bacillus licheniformis*) on
 growth performance, feed efficiency, body composition and immune parameters of
 whiteleg shrimp (*Litopenaeus vannamei*) postlarvae. Aquaculture Research 49: 1926–
 1933. https://doi.org/10.1111/are.13648
- Santos, K.O., Costa-Filho, J., Spagnol, K.L., Nornberg, B.F., Lopes, F.M., Tesser, M.B.,
 Marins, L.F. (2020) The inclusion of a transgenic probiotic expressing recombinant
 phytase in a diet with a high content of vegetable matter markedly improves growth
 performance and the expression of growth-related genes and other selected genes in
 zebrafish. Aquaculture 519. https://doi.org/10.1016/j.aquaculture.2019.734878
- Singh, B., Satyanarayana, T. (2015) Fungal phytases: Characteristics and amelioration of
 nutritional quality and growth of non-ruminants. Journal of Animal Physiology and
 Animal Nutrition 99(4):646-60. https://doi.org/10.1111/jpn.12236
- Shi, B, Xu, FM, Zhou, QC, Regan, MK, Betancor, MB, Tocher, DR, Sun, MH, Meng, FY,
 Jiao, LF, Jin, M. (2021) Dietary organic zinc promotes growth, immune response and
 antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp
 (*Litopenaeus vannamei*). Aquaculture Reports 19: 2352-5134.
 https://doi.org/10.1016/j.aqrep.2021.100638.
- Wang, Y., al Farraj, D.A., Vijayaraghavan, P., Hatamleh, A.A., Biji, G.D., Rady, A.M. (2020)
 Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger
 shrimp *Penaeus monodon*. Saudi Journal of Biological Sciences 27: 2479–2484.
 https://doi.org/10.1016/j.sjbs.2020.07.010
- Yao, Y.Y., Yang, Y.L., Gao, C.C., Zhang, F.L., Xia, R., Li, D., Hu, J., Ran, C., Zhang, Z.,
 Liu-Clarke, J., Zhou, Z.G. (2020) Surface display system for probiotics and its
 application in aquaculture. Reviews in Aquaculture 12(4): 2333-2350.
 https://doi.org/10.1111/raq.12437
- Zacher, A., Baum, C., de Mol, F., Dehmer, K.J., Gerowitt, B. (2021) Mixed growth with 29 weeds promotes mycorrhizal colonization and increases the plant-availability of 30 phosphorus under maize (Zea L.). Agronomy 1304. 31 mays 11(7): https://doi.org/10.3390/agronomy11071304 32

- Zhu, C., Shi, D., Liao, S., He, P., Jia, R. (2020) Effects of *Synechococcus sp.* PCC 7942
 harboring vp19, vp28, and vp (19 + 28) on the survival and immune response of
 Litopenaeus vannamei infected WSSV. Fish and Shellfish Immunology 99: 1–8.
 https://doi.org/10.1016/j.fsi.2020.01.028
 Zhu, Y.T. Li, D. Zhang, Y. Li, Y.L. Li, W.W. Wang, O. (2016) Pole of transplutaminase
- Zhu, Y.T., Li, D., Zhang, X., Li, X.J., Li, W.W., Wang, Q. (2016) Role of transglutaminase
 in immune defense against bacterial pathogens via regulation of antimicrobial
 peptides. Developmental and Comparative Immunology 55: 39–50.
 https://doi.org/10.1016/j.dci.2015.10.005
- Zuo, Z. han, Shang, B. jiao, Shao, Y. chun, Li, W. yue, Sun, J. sheng (2019) Screening of
 intestinal probiotics and the effects of feeding probiotics on the growth, immune,
 digestive enzyme activity and intestinal flora of *Litopenaeus vannamei*. Fish and
 Shellfish Immunology 86: 160–168. https://doi.org/10.1016/j.fsi.2018.11.003